Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 33(1): e17190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909668

RESUMEN

After the domestication of goats around 10,000 years before the present (BP), humans transported goats far beyond the range of their wild ancestor, the bezoar goat. This brought domestic goats into contact with many wild goat species such as ibex and markhor, enabling introgression between domestic and wild goats. To investigate this, while shedding light on the taxonomic status of wild and domestic goats, we analysed genome-wide SNP data of 613 specimens from 14 taxonomic units, including Capra hircus, C. pyrenaica, C. ibex (from Switzerland, Austria, Germany and Slovenia), C. aegagrus aegagrus, C. a. cretica, C. h. dorcas, C. caucasica caucasica, C. c. severtzovi, C. c. cylindricornis, C. falconeri, C. sibirica sibirica, C. s. alaiana and C. nubiana, as well as Oreamnos americanus (mountain goat) as an outgroup. To trace gene flow between domestic and wild goats, we integrated genotype data of local goat breeds from the Alps as well as from countries such as Spain, Greece, Türkiye, Egypt, Sudan, Iran, Russia (Caucasus and Altai) and Pakistan. Our phylogenetic analyses displayed a clear separation between bezoar-type and ibex-type clades with wild goats from the Greek islands of Crete and Youra clustered within domestic goats, confirming their feral origin. Our analyses also revealed gene flow between the lineages of Caucasian tur and domestic goats that most likely occurred before or during early domestication. Within the clade of domestic goats, analyses inferred gene flow between African and Iberian goats. The detected events of introgression were consistent with previous reports and offered interesting insights into the historical relationships among domestic and wild goats.


Asunto(s)
Bezoares , Animales , Humanos , Filogenia , Genotipo , Bezoares/genética , Cabras/genética , Genoma/genética
2.
Vet Res ; 54(1): 95, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853447

RESUMEN

When resequencing animal genomes, some short reads cannot be mapped to the reference genome and are usually discarded. In this study, unmapped reads from 302 German Black Pied cattle were analyzed to identify potential pathogenic DNA. These unmapped reads were assembled and blasted against NCBI's database to identify bacterial and viral sequences. The results provided evidence for the presence of pathogens. We found sequences of Bovine parvovirus 3 and Mycoplasma species. These findings emphasize the information content of unmapped reads for gaining insight into bacterial and viral infections, which is important for veterinarians and epidemiologists.


Asunto(s)
Enfermedades de los Bovinos , Virosis , Bovinos , Animales , Análisis de Secuencia de ADN/veterinaria , Secuenciación Completa del Genoma/veterinaria , Virosis/veterinaria , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria
3.
J Dairy Sci ; 106(5): 3345-3358, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37028956

RESUMEN

Genetic evaluations of local cattle breeds are hampered due to small reference groups or biased due to the utilization of SNP effects estimated in other large populations. Against this background, there is a lack of studies addressing the possible advantage of whole-genome sequences (WGS) or consideration of specific variants from WGS data in genomic predictions for local breeds with small population size. Consequently, the aim of this study was to compare genetic parameters and accuracies of genomic estimated breeding values (GEBV) for 305-d production traits, fat-to protein ratio (FPR), and somatic cell score (SCS) at the first test date after calving and confirmation traits of the endangered German Black Pied cattle (DSN) breed using 4 different marker panels: (1) the commercial 50K Illumina BovineSNP50 BeadChip, (2) a customized 200K chip designed for DSN (DSN200K) which considers the most important variants for DSN from WGS, (3) randomly generated 200K chips based on WGS data, and (4) a WGS panel. The same number of animals was considered for all marker panel analyses (i.e., 1,811 genotyped or sequenced cows for conformation traits, 2,383 cows for lactation production traits, and 2,420 cows for FPR and SCS). Mixed models for the estimation of genetic parameters directly included the respective genomic relationship matrix from the different marker panels plus the trait-specific fixed effects. For the calculation of GEBV accuracies, we applied repeated random subsampling validation. In the process of separate cross-validations per trait, we created a validation set including 20% of cows with masked phenotypes, and a training set comprising 80% of the cows. The cows were selected randomly in a procedure with 10 replicates considering replacements in the different scenarios. The accuracy was defined as the correlation between the direct GEBV and the phenotypes with subtracted corresponding fixed effects for the cows in the validation set. For FPR and SCS, as well as for lactation production traits, heritabilities were largest based on WGS data, but the increase compared with the 50K or DSN200K applications was quite small in the range from 0.01 to 0.03. Also, for most of the conformation traits, heritabilities were largest based on WGS and DSN200K data, but the increase was in the range of the corresponding standard error. Accordingly, GEBV accuracies for most of the studied traits were highest based on WGS data or when utilizing the DSN200K chip, but the accuracy differences across the marker panels were quite small and nonsignificant. In conclusion, WGS data and the DSN200K chip only contributed to minor improvements in genomic predictions, still justifying the use of the commercial 50K chip. Nevertheless, WGS and the 200KDSN chip harbor breed-specific variants, which are valuable for studying causal genetic mechanisms in the endangered DSN population.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Femenino , Bovinos/genética , Animales , Genotipo , Fenotipo , Genómica/métodos
4.
Mamm Genome ; 33(3): 465-470, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34910225

RESUMEN

The Berlin Fat Mouse Inbred (BFMI) line is a model for juvenile obesity. Previous studies on crosses between BFMI and C57Bl/6N (B6N) have identified a recessive defect causing juvenile obesity on chromosome 3 (jObes1). Bbs7 was identified as the most likely candidate gene for the observed effect. Comparative sequence analysis showed a 1578 bp deletion in intron 8 of Bbs7 in BFMI mice. A CTCF-element is located inside this deletion. To investigate the functional effect of this deletion, it was introduced into B6N mice using CRISPR/Cas9. Two mice containing the target deletion were obtained (B6N Bbs7emI8∆1 and Bbs7emI8∆2) and were subsequently mated to BFMI and B6N to generate two families suitable for complementation. Inherited alleles were determined and body composition was measured by quantitative magnetic resonance. Evidence for a partial complementation (13.1-15.1%) of the jObes1 allele by the CRISPR/Cas9 modified B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was found. Mice carrying the complementation alleles had a 23-27% higher fat-to-lean ratio compared to animals which have a B6N allele (P(Bbs7emI8∆1) = 4.25 × 10-7; P(Bbs7emI8∆2) = 3.17 × 10-5). Consistent with previous findings, the recessive effect of the BFMI allele was also seen for the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles. However, the effect size of the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was smaller than the BFMI allele, and thus showed only a partial complementation. Findings suggest additional variants near Bbs7 in addition to or interacting with the deletion in intron 8.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas del Citoesqueleto , Obesidad , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas del Citoesqueleto/genética , Intrones/genética , Ratones , Ratones Endogámicos , Obesidad/genética
5.
Int J Obes (Lond) ; 46(2): 307-315, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34689180

RESUMEN

BACKGROUND: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. METHODS: In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. RESULTS: Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8-100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5-26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9-74.6 Mb) and for body weight on Chr 16 (3.9-21.4 Mb). CONCLUSIONS: QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1.


Asunto(s)
Obesidad/dietoterapia , Sitios de Carácter Cuantitativo/genética , Animales , Carbohidratos/efectos adversos , Mapeo Cromosómico/métodos , Mapeo Cromosómico/estadística & datos numéricos , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/estadística & datos numéricos , Modelos Animales de Enfermedad , Ratones , Obesidad/metabolismo , Obesidad/fisiopatología , Sitios de Carácter Cuantitativo/fisiología
6.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361806

RESUMEN

The Bardet-Biedl Syndrome 7 (Bbs7) gene was identified as the most likely candidate gene causing juvenile obesity in the Berlin Fat Mouse Inbred (BFMI) line. Bbs7 expression is significantly lower in the brain, adipose tissue, and liver of BFMI mice compared to lean C57BL/6NCrl (B6N) mice. A DNA sequence comparison between BFMI and B6N revealed 16 sequence variants in the Bbs7 promoter region. Here, we tested if these mutations contribute to the observed differential expression of Bbs7. In a cell-based dual-luciferase assay, we compared the effects of the BFMI and the B6N haplotypes of different regions of the Bbs7 promotor on the reporter gene expression. A single-nucleotide polymorphism (SNP) was identified causing a significant reduction in the reporter gene expression. This SNP (rs29947545) is located in the 5' UTR of Bbs7 at Chr3:36.613.350. The SNP is not unique to BFMI mice but also occurs in several other mouse strains, where the BFMI allele is not associated with lower Bbs7 transcript amounts. Thus, we suggest a compensatory mutation in the other mouse strains that keeps Bbs7 expression at the normal level. This compensatory mechanism is missing in BFMI mice and the cell lines tested.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas del Citoesqueleto , Ratones , Animales , Regiones no Traducidas 5'/genética , Ratones Endogámicos C57BL , Regulación hacia Abajo , Mutación
7.
Trop Anim Health Prod ; 54(2): 142, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35332362

RESUMEN

The improvement of milk production of indigenous Sudanese cattle such as Bos indicus Butana and its cross with Holstein is a major goal of the Sudanese government to ensure sufficient healthy nutrition in the country. In this study, we investigated the K232A polymorphism of diacylglycerol acyltransferase (DGAT1), a well-known modulator of milk production in other breeds. We determined allele frequencies and the allele effects on milk production. Therefore, 93 purebred Butana and 203 Butana × Holstein crossbred cattle were genotyped using competitive allele-specific PCR assays. Association analysis was performed using a linear mixed model in R. In purebred Butana cattle, the lysine DGAT1 protein variant K232, which is found to be associated with higher fat and protein contents, as well as higher fat yield was highly frequent at 0.929, while its frequency in Butana × Holstein crossbred cattle was 0.394. Significant effects were found on milk yield (P = 7.6 × 10-20), fat yield (P = 2.2 × 10-17), protein yield (P = 2.0 × 10-19) and lactose yield (P = 4.0 × 10-18) in crossbred cattle. As expected, the protein variant K232 was disadvantageous since it was decreasing milk, protein, and lactose yields by 1.741 kg, 0.063 kg and 0.084 kg, respectively. No significant effects were found for milk fat, protein, and lactose contents. The high frequency of the lysine DGAT1 protein variant K232 in Butana cattle could contribute to their high milk fat content in combination with low milk yield. In Butana × Holstein crossbred cattle, the DGAT1 marker can be used for effective selection and thus genetic improvement of milk production.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Leche , Animales , Bovinos/genética , Diacilglicerol O-Acetiltransferasa/genética , Frecuencia de los Genes , Genotipo , Leche/metabolismo , Polimorfismo Genético
8.
Trop Anim Health Prod ; 54(1): 50, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022894

RESUMEN

The Bos indicus zebu cattle Butana is the most commonly used indigenous dairy cattle breed in Sudan. In the last years, high-yielding Holstein dairy cattle were introgressed into Butana cattle to improve their milk yield and simultaneously keep their good adaption to extreme environmental conditions. With the focus on the improvement of milk production, other problems arose such as an increased susceptibility to mastitis. Thus, genetic selection for mastitis resistance should be considered to maintain healthy and productive cows. In this study, we tested 10 single nucleotide polymorphisms (SNPs) which had been associated with somatic cell score (SCS) in Holstein cattle for association with SCS in 37 purebred Butana and 203 Butana × Holstein crossbred cattle from Sudan. Animals were genotyped by competitive allele-specific PCR assays and association analysis was performed using a linear mixed model. All 10 SNPs were segregating in the crossbred Butana × Holstein populations, but only 8 SNPs in Sudanese purebred Butana cattle. The SNP on chromosome 13 was suggestively associated with SCS in the Butana × Holstein crossbred population (rs109441194, 13:79,365,467, PBF = 0.054) and the SNP on chromosome 19 was significantly associated with SCS in both populations (rs41257403, 19:50,027,458, Butana: PBF = 0.003, Butana × Holstein: PBF = 6.2 × 10-16). The minor allele of both SNPs showed an increase in SCS. Therefore, selection against the disadvantageous minor allele could be used for genetic improvement of mastitis resistance in the studied populations. However, investigations in a bigger population and across the whole genome are needed to identify additional genomic loci.


Asunto(s)
Leche , Polimorfismo de Nucleótido Simple , Alelos , Animales , Bovinos/genética , Femenino , Genómica , Genotipo
9.
BMC Genomics ; 22(1): 905, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922441

RESUMEN

BACKGROUND: German Black Pied cattle (DSN) are an endangered dual-purpose breed which was largely replaced by Holstein cattle due to their lower milk yield. DSN cattle are kept as a genetic reserve with a current herd size of around 2500 animals. The ability to track sequence variants specific to DSN could help to support the conservation of DSN's genetic diversity and to provide avenues for genetic improvement. RESULTS: Whole-genome sequencing data of 304 DSN cattle were used to design a customized DSN200k SNP chip harboring 182,154 variants (173,569 SNPs and 8585 indels) based on ten selection categories. We included variants of interest to DSN such as DSN unique variants and variants from previous association studies in DSN, but also variants of general interest such as variants with predicted consequences of high, moderate, or low impact on the transcripts and SNPs from the Illumina BovineSNP50 BeadChip. Further, the selection of variants based on haplotype blocks ensured that the whole-genome was uniformly covered with an average variant distance of 14.4 kb on autosomes. Using 300 DSN and 162 animals from other cattle breeds including Holstein, endangered local cattle populations, and also a Bos indicus breed, performance of the SNP chip was evaluated. Altogether, 171,978 (94.31%) of the variants were successfully called in at least one of the analyzed breeds. In DSN, the number of successfully called variants was 166,563 (91.44%) while 156,684 (86.02%) were segregating at a minor allele frequency > 1%. The concordance rate between technical replicates was 99.83 ± 0.19%. CONCLUSION: The DSN200k SNP chip was proved useful for DSN and other Bos taurus as well as one Bos indicus breed. It is suitable for genetic diversity management and marker-assisted selection of DSN animals. Moreover, variants that were segregating in other breeds can be used for the design of breed-specific customized SNP chips. This will be of great value in the application of conservation programs for endangered local populations in the future.


Asunto(s)
Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética
10.
Int J Obes (Lond) ; 45(6): 1284-1297, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33723359

RESUMEN

BACKGROUND/OBJECTIVES: There is a growing appreciation for individual responses to diet. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed. In this study, we searched for genetic variants underlying differences in the responses to American and ketogenic diets between C57BL/6J (B6) and FVB/NJ (FVB) mouse strains. RESULTS: Genetic mapping of fat and lean mass gain revealed QTLs on Chromosome (Chr) 1 at 191.6 Mb (Fmgq1) (P < 0.001, CI = 180.2-194.4 Mb), Chr5 at 73.7 Mb (Fmgq2, Lmgq1) (P < 0.001, CI = 66.1-76.6 Mb), and Chr7 at 40.5 Mb (Fmgq3) (P < 0.01, CI = 36.6-44.5 Mb). Analysis of serum HDL cholesterol concentration identified a significant (P < 0.001, CI = 160.6-176.1 Mb) QTL on Chr1 at 168.6 Mb (Hdlq1). Causal network inference suggests that HDL cholesterol and fat mass gain are both linked to Fmgq1. CONCLUSIONS: Strong sex effects were identified at both Fmgq2 and Lmgq1, which are also diet-dependent. Interestingly, Fmgq2 and Fmgq3 affect fat gain directly, while Fmgq1 influences fat gain directly and via an intermediate change in serum cholesterol. These results demonstrate how precision nutrition will be advanced through the integration of genetic variation and sex in physiological responses to diets varied in carbohydrate composition.


Asunto(s)
Tejido Adiposo , Dieta Cetogénica , Dieta Occidental , Sitios de Carácter Cuantitativo/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiología , Animales , Ratones , Factores Sexuales
11.
J Dairy Sci ; 103(11): 10289-10298, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32921452

RESUMEN

The dual-purpose German Black Pied Cattle (DSN) has become an endangered breed of approximately 2,550 registered cows in Germany. The breed is genetically related to Holstein-Friesian cattle because the old DSN breed contributed to the selection of the modern Holstein dairy cow. In dairy farms, breeders aim to improve animal health and well-being by reducing the number of mastitis cases, which would also reduce milk losses and treatment costs. On the genomic level, no markers associated with clinical mastitis have been reported in DSN. Therefore, we performed a genome-wide association study on 1,062 DSN cows using a univariate linear mixed model that included a relatedness matrix to correct for population stratification. Although the statistical power was limited by the small population size, 3 markers were significantly associated, and 2 additional markers showed a suggestive association with clinical mastitis. Those markers accounted for 1 to 3% of the variance of clinical mastitis in the examined DSN population. One marker was found in the intragenic region of NEURL1 on BTA26, and the other 4 markers in intergenic regions on BTA3, BTA6, and BTA9. Further analyses identified 23 positional candidate genes. Among them is BMPR1B, which has been previously associated with clinical mastitis in other dairy cattle breeds. The markers presented here can be used for selection for mastitis-resistant animals in the endangered DSN population, and can broadly contribute to a better understanding of mastitis determinants in dairy cattle breeds.


Asunto(s)
Estudio de Asociación del Genoma Completo/veterinaria , Genoma/genética , Mastitis Bovina/epidemiología , Leche/metabolismo , Animales , Cruzamiento , Bovinos , Femenino , Alemania/epidemiología
12.
Trop Anim Health Prod ; 52(3): 1211-1222, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31782121

RESUMEN

The aim of the present study was to assess genetic variation that is characteristic for Sudanese goat breeds in the milk whey protein genes (LALBA and BLG). Four Sudanese goat breeds were screened for variability in LALBA and BLG genes at the DNA level by comparative sequencing of five animals per breed. Sixteen SNPs were identified in LALBA: seven in the upstream region, six synonymous, and three in the 3´-UTR. Three novel synonymous SNPs in exon 2 (ss5197800003, ss5197800012, and ss5197800004) were found in Nubian, Desert, and Nilotic, but not in Taggar goats. One SNP in the promoter of LALBA (rs642745519) modifies a predicted transcription factor binding site for Tcfe2a. The SNPs in the 3'-UTR (rs657915405, rs641559728, and rs664225585) affect predicted miRNA target sites. With respect to haplotypes in the exonic region, haplotype LALBA-A is most frequent in Nubian, Desert, and Nilotic goats, while haplotype LALBA-D is prevalent in Taggar goats. In BLG, 30 SNPs were detected: eight in the upstream gene region, two synonymous, 17 intronic, and three in the 3'-UTR. Among the 30 identified SNPs, 15 were novel. Four of these novel SNPs were located in the upstream gene region, one was synonymous, and ten were intronic. The novel synonymous SNP (ss5197800017), located in exon 2, was only found in Nubian and Nilotic goats. The SNPs ss5197800010 and rs635615192 in the promoter are located in predicted binding sites of transcription factors (M6097, Elk3, Elf5, and GABPA). Among seven haplotypes detected in the coding region, haplotype BLG-A is most frequent in Nubian and Nilotic goats while haplotype BLG-B is most frequent in Desert and Taggar goats. The high variability in regulatory gene regions among Sudanese goats could potentially affect the quality and yield of whey proteins in goat milk and provide a wide resource for genetic improvement of milk production and milk technology characteristics.


Asunto(s)
Cabras/genética , Proteína de Suero de Leche/genética , Animales , Cruzamiento , Regulación de la Expresión Génica , Cabras/fisiología , Haplotipos , Leche/química , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sudán , Proteína de Suero de Leche/metabolismo
13.
BMC Genomics ; 20(1): 277, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961534

RESUMEN

BACKGROUND: Gastrointestinal nematodes (GIN), liver flukes (Fasciola hepatica) and bovine lungworms (Dictyocaulus viviparus) are the most important parasitic agents in pastured dairy cattle. Endoparasite infections are associated with reduced milk production and detrimental impacts on female fertility, contributing to economic losses in affected farms. In quantitative-genetic studies, the heritabilities for GIN and F. hepatica were moderate, encouraging studies on genomic scales. Genome-wide association studies (GWAS) based on dense single nucleotide polymorphism (SNP) marker panels allow exploration of the underlying genomic architecture of complex disease traits. The current GWAS combined the identification of potential candidate genes with pathway analyses to obtain deeper insights into bovine immune response and the mechanisms of resistance against endoparasite infections. RESULTS: A 2-step approach was applied to infer genome-wide associations in an endangered dual-purpose cattle subpopulation [Deutsches Schwarzbuntes Niederungsrind (DSN)] with a limited number of phenotypic records. First, endoparasite traits from a population of 1166 Black and White dairy cows [including Holstein Friesian (HF) and DSN] naturally infected with GIN, F. hepatica and D. viviparus were precorrected for fixed effects using linear mixed models. Afterwards, the precorrected phenotypes were the dependent traits (rFEC-GIN, rFEC-FH, and rFLC-DV) in GWAS based on 423,654 SNPs from 148 DSN cows. We identified 44 SNPs above the genome-wide significance threshold (pBonf = 4.47 × 10- 7), and 145 associations surpassed the chromosome-wide significance threshold (range: 7.47 × 10- 6 on BTA 1 to 2.18 × 10- 5 on BTA 28). The associated SNPs identified were annotated to 23 candidate genes. The DAVID analysis inferred four pathways as being related to immune response mechanisms or involved in host-parasite interactions. SNP effect correlations considering specific chromosome segments indicate that breeding for resistance to GIN or F. hepatica as measured by fecal egg counts is genetically associated with a higher risk for udder infections. CONCLUSIONS: We detected a large number of loci with small to moderate effects for endoparasite resistance. The potential candidate genes regulating resistance identified were pathogen-specific. Genetic antagonistic associations between disease resistance and productivity were specific for specific chromosome segments. The 2-step approach was a valid methodological approach to infer genetic mechanisms in an endangered breed with a limited number of phenotypic records.


Asunto(s)
Bovinos/genética , Bovinos/parasitología , Especies en Peligro de Extinción , Estudio de Asociación del Genoma Completo , Genómica , Animales , Bovinos/fisiología , Técnicas de Genotipaje , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple
14.
J Dairy Res ; 86(1): 77-84, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30560744

RESUMEN

We hypothesised that a relationship would exist between hair fatty acids, especially C12:0, C14:0 and C16:0, and parameters of energy metabolism such as energy intake, energy mobilisation, and energy requirement for maintenance and milk performance. For this study, 11 primiparous German Holstein cows were available from which hair samples at weeks 6 and 8 of lactation were analysed. The average body weight of these animals was 558 ± 27 kg at calving and milk yield at 100-days in milk was 3,537 ± 529 kg. Feed intake and milk yield were measured daily. Body weight and back fat thickness were measured at calving and in weeks 2, 4, and 8 of lactation. Energy balance and energy utilisation were calculated until week 6 of lactation. Spearman's correlation coefficients were found to be significantly positive for the relationship between the percentage of C12:0 and C14:0 fatty acids in the hair in lactation week 8 and energy intake in weeks 5 and 6 (0.62 < r < 0.65, P < 0.05). If the animals are grouped according to their energy utilisation between weeks 1 and 6 into two groups higher (n = 6) or lower (n = 5) than the median, animals of the high energy utilising group had a higher energy intake. These animals had also higher percentages of the C12:0 fatty acid in their hair fat (week 6: 4.9% vs. 3.1%, P < 0.05; week 8: 4.3% vs. 2.9%, P = 0.05). Our hypothesis is supported, and this study justifies further investigation of the content of medium-chain fatty acids in hair samples as biomarkers for the metabolic status of a cow during early lactation.


Asunto(s)
Bovinos/fisiología , Metabolismo Energético , Ácidos Grasos/análisis , Cabello/química , Lactancia/fisiología , Animales , Ingestión de Energía , Femenino , Necesidades Nutricionales , Paridad , Embarazo
15.
Growth Factors ; 36(1-2): 78-88, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-30196772

RESUMEN

Besides liver, IGF-I is expressed in adipose tissue. However, the effects of this local IGF-I on adipose tissue and metabolism are unclear. We generated adipocyte-specific knock-out mice on the background of the Berlin Fat Mouse Inbred (BFMI) line to evaluate the contribution of adipocyte-IGF-I on glucose metabolism and adipose tissue development. BFMI mice are obese, non-diabetic with elevated plasma insulin and IGF-I concentration. The knock-out in adipocytes led to a total white adipose tissue expression of 50-60% due to unaltered Igf-1 expression in stromavascular cells. The lack of IGF-I from adipocytes did not alter plasma IGF-I concentration. BFMIChr3-Igf-I-KOQ-AT mice had reduced adipose tissue mass in most depots. During oral glucose tolerance tests, BFMIChr3-Igf-I-KOQ-AT mice showed an impaired glucose clearance (p = .03). Interestingly, insulin action was enhanced during insulin tolerance tests (p = .05). In conclusion, adipocyte-specific IGF-I ablation in obese BFMI mice results in reduced adipose tissue mass and thereby alters glucose metabolism.


Asunto(s)
Adipocitos/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Obesidad Infantil/sangre , Animales , Dieta Alta en Grasa , Masculino , Ratones , Ratones Noqueados
16.
Br J Nutr ; 120(12): 1349-1358, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30387407

RESUMEN

Zn serves as a powerful feed additive to reduce post-weaning diarrhoea in pigs. However, the mechanisms responsible for Zn-associated effects on the adaptive immune responses following feeding of a very high dosage of Zn remain elusive. In this study, we examined the T-cell response in gut-associated lymphatic tissues of seventy-two weaned piglets. Piglets received diets with 57 mg Zn/kg (low Zn concentration, LZn), 164 mg Zn/kg (medium Zn concentration, MZn) or 2425 mg Zn/kg (high Zn concentration, HZn) mg Zn/kg feed for 1, 2 or 4 weeks. We observed that feeding the HZn diet for 1 week increased the level of activated T-helper cells (CD4+ and CD8α dim) compared with feeding MZn and LZn (P<0·05). In addition, we observed higher transcript amounts of interferon γ and T-box 21 (TBET) in the HZn group compared with the MZn and LZn groups (P<0·05). A gene set enrichment analysis revealed an over-representation of genes associated with 'cytokine signalling in immune system'. Remarkably, feeding of a very high Zn dosage led to a switch in the immune response after 2 weeks. We detected higher relative cell counts of CD4+CD25high regulatory T-helper cells (P<0·05) and a higher expression of forkhead box P3 (FOXP3) transcripts (P<0·05). After 4 weeks of feeding a high-dosage Zn diet, the relative CD4+ T-cell count (P<0·05) and the relative CD8ß + T-cell count (P<0·1) were reduced compared with the MZn group. We hypothesise that after 1 week the cellular T-helper 1 response is switched on and after 2 weeks it is switched off, leading to decreased numbers of T-cells.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Intestinos/efectos de los fármacos , Tejido Linfoide/metabolismo , Zinc/farmacología , Alimentación Animal , Animales , Citocinas/metabolismo , Dieta , Femenino , Regulación de la Expresión Génica , Sistema Inmunológico , Intestinos/patología , Leucocitos/efectos de los fármacos , Tejido Linfoide/efectos de los fármacos , Masculino , Micronutrientes/química , Análisis de Secuencia de ARN , Sus scrofa , Porcinos , Células TH1/efectos de los fármacos , Destete , Óxido de Zinc/química
17.
BMC Genet ; 18(1): 92, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29058610

RESUMEN

BACKGROUND: Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. RESULTS: More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (FIS) did not differ from zero. Fst coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high Fst values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. CONCLUSIONS: The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high Fst values in Taggar goat and allowed to identify candidate genes which can be used in the development of breed selection programs to improve local breeds and find genetic factors contributing to the adaptation to harsh environments.


Asunto(s)
Marcadores Genéticos , Genética de Población , Genoma , Cabras/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN/métodos , Animales , Femenino , Frecuencia de los Genes , Filogenia , Análisis de Componente Principal/métodos , Sudán
18.
Appl Environ Microbiol ; 82(8): 2263-2269, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826223

RESUMEN

Probiotics are widely used in human and animal health, but little is known about the mode of action of probiotics. One possible mechanism at the molecular level could be an influence on microRNAs (miRNAs) and the related immune-relevant target genes. Here, we analyzed differential expression of miRNA and potential target genes of ileal and jejunal lymphatic tissues from Enterococcus faeciumNCIMB 10415-fed piglets versus untreated controls by using next-generation sequencing. We identified miR-423-5p as being greatly affected by the treatment group (2.32-fold;P= 0.014). Validation by reverse transcription-quantitative PCR (RT-qPCR) confirmed a significant upregulation of miR-423-5p (2.11-fold;P= 0.03) and, additionally, downregulation of the important immune-relevant immunoglobulin lambda light C region (IGLC) (0.61-fold;P= 0.03) and immunoglobulin kappa constant (IGKC) (0.69-fold;P= 0.04) target genes. Expression analysis of miR-423-5p and IGLC at different age points shows a clear anti correlated relationship. Luciferase reporter assays with a HeLa cell line verified IGLC as a target of miR-423-5p. The results provided evidence for an effect of feeding of E. faeciumon the expression of miR-423-5p and on the regulation of the IGLC gene through miR-423-5p. This might be a possible mode of action of E. faeciumon immune cell regulation in the small intestine.


Asunto(s)
Enterococcus faecium/inmunología , Regulación de la Expresión Génica , Inmunoglobulinas/metabolismo , MicroARNs/metabolismo , Animales , Animales Recién Nacidos , Regulación hacia Abajo , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos
19.
J Dairy Sci ; 99(9): 7240-7246, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27394937

RESUMEN

Selection for improved health and welfare in farm animals is of increasing interest worldwide. Peripartum energy balance is a key factor for pathogenesis of diseases in dairy cows. The intravenous glucose tolerance test (ivGTT) can be used to study the metabolic response to a glucose stimulus. The aim of this study was to estimate heritability of ivGTT traits in German Holstein bulls. A total of 541 Holstein bulls aged 7 to 17 mo from 2 breeding stations were subjected to the ivGTT. Serum glucose concentrations were measured at 0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 min relative to glucose infusion. The maximum increase in blood glucose concentration, glucose area equivalent, and blood glucose half-life period were calculated. Heritabilities were estimated using a univariate animal model including station-year-season and age as fixed effects, and animal additive genetic and residual as random effects. The estimated heritabilities were 0.19 for fasting glucose concentration, 0.43 for glucose area equivalent, 0.40 for glucose half-life period, 0.14 for the peak glucose concentration, and 0.12 for the maximum increase of blood glucose concentration. Correlations between ivGTT traits and breeding values for milk yield and composition were not found. The results indicate that heritability for response to glucose is high, which warrants further investigation of this trait for genetic improvement of metabolic disorders. Research is necessary to determine the target levels of ivGTT traits and potential associations between ivGTT traits in breeding bulls and periparturient diseases in their offspring.


Asunto(s)
Glucemia/metabolismo , Bovinos/genética , Metabolismo Energético/genética , Carácter Cuantitativo Heredable , Animales , Cruzamiento , Femenino , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Lactancia , Masculino , Leche/metabolismo , Periodo Periparto/sangre , Periodo Periparto/genética , Fenotipo
20.
BMC Genomics ; 16: 904, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26546267

RESUMEN

BACKGROUND: We investigated parent-of-origin and allele-specific expression effects on obesity and hepatic gene expression in reciprocal crosses between the Berlin Fat Mouse Inbred line (BFMI) and C57Bl/6NCrl (B6N). RESULTS: We found that F1-males with a BFMI mother developed 1.8 times more fat mass on a high fat diet at 10 weeks than F1-males of a BFMI father. The phenotype was detectable from six weeks on and was preserved after cross-fostering. RNA-seq data of liver provided evidence for higher biosynthesis and elongation of fatty acids (p = 0.00635) in obese male offspring of a BFMI mother versus lean offspring of a BFMI father. Furthermore, fatty acid degradation (p = 0.00198) and the peroxisome pathway were impaired (p = 0.00094). The circadian rhythm was affected as well (p = 0.00087). Among the highest up-regulated protein coding genes in obese males were Acot4 (1.82 fold, p = 0.022), Cyp4a10 (1.35 fold, p = 0.026) and Cyp4a14 (1.32 fold, p = 0.012), which hydroxylize fatty acids and which are known to be increased in liver steatosis. Obese males showed lower expression of the genetically imprinted and paternally expressed 3 (Peg3) gene (0.31 fold, p = 0.046) and higher expression of the androgen receptor (Ar) gene (2.38 fold, p = 0.068). Allelic imbalance was found for expression of ATP-binding cassette transporter gene Abca8b. Several of the differentially expressed genes contain estrogen response elements. CONCLUSIONS: Parent-of-origin effects during gametogenesis and/or fetal development in an obese mother epigenetically modify the transcription of genes that lead to enhanced fatty acid synthesis and impair ß-oxidation in the liver of male, but not female F1 offspring. Down-regulation of Peg3 could contribute to trigger this metabolic setting. At puberty, higher amounts of the androgen receptor and altered access to estrogen response elements in affected genes are likely responsible for male specific expression of genes that were epigenetically triggered. A suggestive lack of estrogen binding motifs was found for highly down-regulated genes in adult hepatocytes of obese F1 males (p = 0.074).


Asunto(s)
Obesidad/genética , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Ácidos Grasos/metabolismo , Femenino , Hígado/metabolismo , Masculino , Ratones , Pubertad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA