RESUMEN
Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.
Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Fagosomas/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Fagosomas/fisiología , Fosfolípidos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.
Asunto(s)
Grasas de la Dieta , Enterocitos , Metabolismo de los Lípidos , Mitocondrias , Animales , Ratones , Aspartato-ARNt Ligasa/metabolismo , Quilomicrones/metabolismo , Grasas de la Dieta/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Enterocitos/metabolismo , Enterocitos/patología , Células Epiteliales/metabolismo , Aparato de Golgi/metabolismo , Intestinos , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patologíaRESUMEN
Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.
Asunto(s)
Autofagia , Linfocitos B , Glicerofosfolípidos , Lisosomas , Animales , Ratones , Linfocitos B/metabolismo , Glicerofosfolípidos/metabolismo , Metabolismo de los Lípidos , Lipidómica/métodos , Lisosomas/metabolismo , Mitocondrias/metabolismo , Proteómica/métodosRESUMEN
SIGNIFICANCE STATEMENT: AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND: Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS: Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS: We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS: CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Humanos , Ratones , Animales , NAD/metabolismo , Restricción Calórica , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/metabolismo , HipoxiaRESUMEN
As a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy. Strikingly, muscle fibers display strong accumulation of both neutral and phospholipids. The metabolic lipid imbalance can be traced to an altered fatty acid synthesis and fatty acid oxidation, accompanied by a defect in acyl chain elongation and desaturation. As an underlying cause, we reveal a severe sarcoplasmic reticulum (SR) stress, leading to the activation of the lipogenic SREBP1c/SREBP2 factors, the accumulation of the Fgf21 cytokine, and alterations of SR-mitochondria morphology. Importantly, pharmacological treatments with the chaperone TUDCA and the fatty acid oxidation activator bezafibrate improve muscle histology and strength of lipin1 mutants. Our data reveal that SR stress and alterations in SR-mitochondria contacts are contributing factors and potential intervention targets of the myopathy associated with lipin1 deficiency.
Asunto(s)
Estrés del Retículo Endoplásmico/genética , Enfermedades Musculares/genética , Fosfatidato Fosfatasa/genética , Retículo Sarcoplasmático/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Chaperonas Moleculares/farmacología , Chaperonas Moleculares/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/patología , Ácido Tauroquenodesoxicólico/uso terapéuticoRESUMEN
Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction--induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting.
Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Restricción Calórica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacología , Riñón/metabolismo , Masculino , Ratones , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & controlRESUMEN
Heart development relies on PTMs that control cardiomyocyte proliferation, differentiation and cardiac morphogenesis. We generated a map of phosphorylation sites during the early stages of cardiac postnatal development in mice; we quantified over 10,000 phosphorylation sites and 5000 proteins that were assigned to different pathways. Analysis of mitochondrial proteins led to the identification of PGC-1- and ERR-induced regulator in muscle 1 (PERM1), which is specifically expressed in skeletal muscle and heart tissue and associates with the outer mitochondrial membrane. We demonstrate PERM1 is subject to rapid changes mediated by the UPS through phosphorylation of its PEST motif by casein kinase 2. Ablation of Perm1 in mice results in reduced protein expression of lipin-1 accompanied by accumulation of specific phospholipid species. Isolation of Perm1-deficient mitochondria revealed significant downregulation of mitochondrial transport proteins for amino acids and carnitines, including SLC25A12/13/29/34 and CPT2. Consistently, we observed altered levels of various lipid species, amino acids, and acylcarnitines in Perm1-/- mitochondria. We conclude that the outer mitochondrial membrane protein PERM1 regulates homeostasis of lipid and amino acid metabolites in mitochondria.
Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Fosfoproteínas/metabolismo , Proteómica , Animales , Corazón/embriología , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Proteínas Musculares/genética , Organogénesis/genética , Proteómica/métodosRESUMEN
Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age-dependent, cardiac-specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS-derivative sphinganine-1-phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P-dependent increase in transcription using an RNA polymerase II inhibitor, block DHS-induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.
Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Variación Genética , Inestabilidad Genómica , Miocardio/metabolismo , Esfingolípidos/metabolismo , Animales , Curcumina/química , Curcumina/farmacología , Daño del ADN/efectos de los fármacos , Metabolismo Energético , Epigénesis Genética , Evolución Molecular , Fundulidae , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Modelos Moleculares , Miocitos Cardíacos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relación Estructura-Actividad , Vertebrados/genética , Vertebrados/metabolismoRESUMEN
BACKGROUND: Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. OBJECTIVE: Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. METHODS: Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [RicEKO] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in RicEKO and control mice. RESULTS: RicEKO newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in RicEKO mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. CONCLUSION: Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.
Asunto(s)
Epidermis , Proteínas de Filamentos Intermediarios , Lípidos , Procesamiento Proteico-Postraduccional/inmunología , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal/inmunología , Animales , Epidermis/inmunología , Epidermis/metabolismo , Proteínas Filagrina , Ictiosis/genética , Ictiosis/inmunología , Ictiosis/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/inmunología , Proteínas de Filamentos Intermediarios/metabolismo , Lípidos/biosíntesis , Lípidos/genética , Lípidos/inmunología , Ratones , Ratones Noqueados , Procesamiento Proteico-Postraduccional/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/inmunología , Transducción de Señal/genéticaRESUMEN
Acute kidney injury (AKI) is a frequent and critical complication in the clinical setting. In rodents, AKI can be effectively prevented through caloric restriction (CR), which has also been shown to increase lifespan in many species. In Caenorhabditis elegans (C. elegans), longevity studies revealed that a marked CR-induced reduction of endocannabinoids may be a key mechanism. Thus, we hypothesized that regulation of endocannabinoids, particularly arachidonoyl ethanolamide (AEA), might also play a role in CR-mediated protection from renal ischemia-reperfusion injury (IRI) in mammals including humans. In male C57Bl6J mice, CR significantly reduced renal IRI and led to a significant decrease of AEA. Supplementation of AEA to near-normal serum concentrations by repetitive intraperitoneal administration in CR mice, however, did not abrogate the protective effect of CR. We also analyzed serum samples taken before and after CR from patients of three different pilot trials of dietary interventions. In contrast to mice and C. elegans, we detected an increase of AEA. We conclude that endocannabinoid levels in mice are modulated by CR, but CR-mediated renal protection does not depend on this effect. Moreover, our results indicate that modulation of endocannabinoids by CR in humans may differ fundamentally from the effects in animal models.
Asunto(s)
Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Endocannabinoides/metabolismo , Adulto , Anciano , Animales , Ácidos Araquidónicos/metabolismo , Caenorhabditis elegans/metabolismo , Restricción Calórica/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Riñón/metabolismo , Longevidad/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Alcamidas Poliinsaturadas/metabolismo , Daño por Reperfusión/metabolismoRESUMEN
BACKGROUND: Dyslipidemia may be linked to meibomian gland dysfunction (MGD) and altered meibum lipid composition. The purpose was to determine if plasma and meibum cholesteryl esters (CE), triglycerides (TG), ceramides (Cer) and sphingomyelins (SM) change in a mouse model of diet-induced obesity where mice develop dyslipidemia. METHODS: Male C57/BL6 mice (8/group, age = 6 wks) were fed a normal (ND; 15% kcal fat) or an obesogenic high-fat diet (HFD; 42% kcal fat) for 10 wks. Tear production was measured and meibography was performed. Body and epididymal adipose tissue (eAT) weights were determined. Nano-ESI-MS/MS and LC-ESI-MS/MS were used to detect CE, TG, Cer and SM species. Data were analyzed by principal component analysis, Pearson's correlation and unpaired t-tests adjusted for multiple comparisons; significance set at p ≤ 0.05. RESULTS: Compared to ND mice, HFD mice gained more weight and showed heavier eAT and dyslipidemia with higher levels of plasma CE, TG, Cer and SM. HFD mice had hypertrophic meibomian glands, increased levels of lipid species acylated by saturated fatty acids in plasma and meibum and excessive tear production. CONCLUSIONS: The majority of meibum lipid species with saturated fatty acids increased with HFD feeding with evidence of meibomian gland hypertrophy and excessive tearing. The dyslipidemia is associated with altered meibum composition, a key feature of MGD.
Asunto(s)
Dislipidemias/metabolismo , Hipertrofia/metabolismo , Glándulas Tarsales/metabolismo , Obesidad/metabolismo , Lágrimas/química , Tejido Adiposo/química , Tejido Adiposo/metabolismo , Animales , Ceramidas/clasificación , Ceramidas/aislamiento & purificación , Ceramidas/metabolismo , Ésteres del Colesterol/clasificación , Ésteres del Colesterol/aislamiento & purificación , Ésteres del Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Dislipidemias/etiología , Dislipidemias/patología , Epidídimo/química , Epidídimo/metabolismo , Humanos , Hipertrofia/etiología , Hipertrofia/patología , Masculino , Glándulas Tarsales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/patología , Análisis de Componente Principal , Esfingomielinas/clasificación , Esfingomielinas/aislamiento & purificación , Esfingomielinas/metabolismo , Lágrimas/metabolismo , Triglicéridos/clasificación , Triglicéridos/aislamiento & purificación , Triglicéridos/metabolismoRESUMEN
Mitochondrial dysfunction causes neurodegeneration but whether impairment of mitochondrial homeostasis in astrocytes contributes to this pathological process remains largely unknown. The m-AAA protease exerts quality control and regulatory functions crucial for mitochondrial homeostasis. AFG3L2, which encodes one of the subunits of the m-AAA protease, is mutated in spinocerebellar ataxia SCA28 and in infantile syndromes characterized by spastic-ataxia, epilepsy and premature death. Here, we investigate the role of Afg3l2 and its redundant homologue Afg3l1 in the Bergmann glia (BG), radial astrocytes of the cerebellum that have functional connections with Purkinje cells (PC) and regulate glutamate homeostasis. We show that astrocyte-specific deletion of Afg3l2 in the mouse leads to late-onset motor impairment and to degeneration of BG, which display aberrant morphology, altered expression of the glutamate transporter EAAT2, and a reactive inflammatory signature. The neurological and glial phenotypes are drastically exacerbated when astrocytes lack both Afg31l and Afg3l2, and therefore, are totally depleted of the m-AAA protease. Moreover, mitochondrial stress responses and necroptotic markers are induced in the cerebellum. In both mouse models, targeted BG show a fragmented mitochondrial network and loss of mitochondrial cristae, but no signs of respiratory dysfunction. Importantly, astrocyte-specific deficiency of Afg3l1 and Afg3l2 triggers secondary morphological degeneration and electrophysiological changes in PCs, thus demonstrating a non-cell-autonomous role of glia in neurodegeneration. We propose that astrocyte dysfunction amplifies both neuroinflammation and glutamate excitotoxicity in patients carrying mutations in AFG3L2, leading to a vicious circle that contributes to neuronal death.
Asunto(s)
Proteasas ATP-Dependientes/deficiencia , ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , Astrocitos/enzimología , Cerebelo/enzimología , Metaloendopeptidasas/deficiencia , Mitocondrias/enzimología , Enfermedades Neurodegenerativas/enzimología , Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Astrocitos/patología , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Inflamación/enzimología , Inflamación/patología , Masculino , Metaloendopeptidasas/genética , Ratones Transgénicos , Mitocondrias/patología , Enfermedades Neurodegenerativas/patología , Células de Purkinje/enzimología , Células de Purkinje/patologíaRESUMEN
Acute kidney injury (AKI) leads to significant morbidity and mortality; unfortunately, strategies to prevent or treat AKI are lacking. In recent years, several preconditioning protocols have been shown to be effective in inducing organ protection in rodent models. Here, we characterized two of these interventions-caloric restriction and hypoxic preconditioning-in a mouse model of cisplatin-induced AKI and investigated the underlying mechanisms by acquisition of multi-layered omic data (transcriptome, proteome, N-degradome) and functional parameters in the same animals. Both preconditioning protocols markedly ameliorated cisplatin-induced loss of kidney function, and caloric restriction also induced lipid synthesis. Bioinformatic analysis revealed mRNA-independent proteome alterations affecting the extracellular space, mitochondria, and transporters. Interestingly, our analyses revealed a strong dissociation of protein and RNA expression after cisplatin treatment that showed a strong correlation with the degree of damage. N-degradomic analysis revealed that most posttranscriptional changes were determined by arginine-specific proteolytic processing. This included a characteristic cisplatin-activated complement signature that was prevented by preconditioning. Amyloid and acute-phase proteins within the cortical parenchyma showed a similar response. Extensive analysis of disease-associated molecular patterns suggested that transcription-independent deposition of amyloid P-component serum protein may be a key component in the microenvironmental contribution to kidney damage. This proof-of-principle study provides new insights into the pathogenesis of cisplatin-induced AKI and the molecular mechanisms underlying organ protection by correlating phenotypic and multi-layered omics data.
Asunto(s)
Lesión Renal Aguda/prevención & control , Restricción Calórica , Hipoxia/metabolismo , Proteoma/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Animales , Cisplatino/toxicidad , Activación de Complemento/efectos de los fármacos , Biología Computacional , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Hipoxia/etiología , Masculino , Ratones , Prueba de Estudio Conceptual , Proteolisis/efectos de los fármacos , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND/AIMS: Fabry disease (FD) is a lysosomal storage disorder characterized by impaired alpha-galactosidase A (α-Gal A) enzyme activity due to mutations in the GLA gene. While virtually all tissues are affected, renal damage is particularly critical for the patients' outcome. Currently, powerful diagnostic tools and in vivo research models to study FD in the kidney are lacking, which is a major obstacle for further improvements in diagnosis and therapy. The present study focuses on the effects of enzyme replacement therapy on a previously established podocyte cell culture model of Fabry disease. METHODS: We investigated the effect of in vitro application of α-Gal A on Fabry podocytes for 3 days, mimicking enzyme replacement therapy. We studied reduction of Gb3 levels and dysregulated molecular pathways such as autophagy, mTOR/AKT signaling and pro-fibrotic signaling by employing immunofluorescence, electron microscopy, tandem mass spectrometry and western blot. RESULTS: We detected complete resolution of Gb3 accumulation in Fabry podocytes upon α-Gal A treatment. Despite robust Gb3 clearance, dysregulation of the signaling pathways investigated was not reversed. CONCLUSION: This study presents first evidence for Gb3-independent effects regarding dysregulation of signal transduction mechanisms in FD not recovering upon α-Gal A treatment. We assume that intracellular alterations observed in FD may have a point of no return after which a reversal of dysregulated cellular signal transduction by α-Gal A treatment is not effective, despite Gb3 clearance. Our observations suggest further research on signal transduction mechanisms altered in Fabry podocytes and on determining the appropriate time for initiation of Fabry therapy.
Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Fabry , Modelos Biológicos , Podocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/uso terapéutico , Técnicas de Cultivo de Célula , Línea Celular Transformada , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Humanos , Podocitos/patologíaRESUMEN
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Asunto(s)
Ataxina-2/genética , Ceramidas/metabolismo , Esfingomielinas/metabolismo , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Ataxina-2/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Esfingosina N-Aciltransferasa/genética , Esfingosina N-Aciltransferasa/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patologíaRESUMEN
Angiopoietin-like 4 (ANGPTL4) regulates plasma triglyceride levels by inhibiting LPL. Inactivation of ANGPTL4 decreases plasma triglycerides and reduces the risk of coronary artery disease. Unfortunately, targeting ANGPTL4 for the therapeutic management of dyslipidemia and atherosclerosis is hampered by the observation that mice and monkeys in which ANGPTL4 is inactivated exhibit lipid accumulation in the mesenteric lymph nodes (MLNs). In mice these pathological events exclusively unfold upon feeding a high saturated FA diet and are followed by an ultimately lethal pro-inflammatory response and chylous ascites. Here, we show that Angptl4-/- mice fed a diet rich in trans FAs develop numerous lipid-filled giant cells in their MLNs, yet do not have elevated serum amyloid and haptoglobin, do not exhibit ascites, and survive, unlike Angptl4-/- mice fed a saturated FA-rich diet. In RAW264.7 macrophages, the saturated FA, palmitate, markedly increased markers of inflammation and the unfolded protein response, whereas the trans-unsaturated elaidate and the cis-unsaturated oleate had the opposite effect. In conclusion, trans and saturated FAs have very distinct biological effects in macrophages. Furthermore, lipid accumulation in MLNs is uncoupled from activation of an acute-phase response and chylous ascites, suggesting that ANGPTL4 should not be fully dismissed as target for dyslipidemia.
Asunto(s)
Proteína 4 Similar a la Angiopoyetina/deficiencia , Ascitis Quilosa/inducido químicamente , Grasas de la Dieta/efectos adversos , Células Espumosas/efectos de los fármacos , Ganglios Linfáticos/efectos de los fármacos , Mesenterio , Ácidos Grasos trans/efectos adversos , Proteínas de Fase Aguda/metabolismo , Animales , Ascitis Quilosa/metabolismo , Ascitis Quilosa/patología , Células Espumosas/citología , Células Espumosas/patología , Células Gigantes/efectos de los fármacos , Células Gigantes/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ganglios Linfáticos/citología , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Peritonitis/patología , Células RAW 264.7RESUMEN
Δ-6-fatty acid desaturase (FADS2) is the key enzyme in the biosynthesis of polyunsaturated fatty acids (PUFAs), the essential structural determinants of mammalian membrane lipid-bilayers. We developed the auxotrophic fads2(-/-) mouse mutant to assess the enigmatic role of ω3- and ω6-PUFAs in lipid homeostasis, membrane structure and function. Obesity resistance is another major phenotype of the fads2(-/-) mutant, the molecular basis of which is unknown. Phospholipidomic profiling of membrane systems of fads2(-/-)mice revealed diacylglycerol-structures, deprived of PUFAs but substituted with surrogate eicosa-5,11,14-trienoic acid. ω6-Arachidonic (AA) and ω3-docosahexaenoic acid (DHA) supplemented diets transformed fads2(-/-) into AA-fads2(-/-) and DHA-fads2(-/-) mutants. Severely altered phospholipid-bilayer structures of subcellular membranes of fads2(-/-) liver specifically interfered with maturation of transcription factor sterol-regulatory-element-binding protein, the key regulator of lipogenesis and lipid homeostasis. This study strengthens the concept that specific PUFA-substituted membrane phospholipid species are critical constituents of the structural platform operative in lipid homeostasis in normal and disease conditions.
Asunto(s)
Linoleoil-CoA Desaturasa/deficiencia , Lipogénesis , Obesidad/enzimología , Adipocitos Blancos/patología , Tejido Adiposo Blanco/patología , Animales , Ácido Araquidónico/metabolismo , Tamaño de la Célula , Resistencia a la Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Hígado Graso/enzimología , Femenino , Ácido Linoleico/metabolismo , Linoleoil-CoA Desaturasa/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Fosfolípidos/metabolismo , Transcriptoma , Aumento de PesoRESUMEN
Lipid peroxidation through electrophilic molecules of extracellular origin is involved in the pathogenesis of many inflammatory conditions. To counteract free radical actions at the plasma membrane, cells host a variety of antioxidative enzymes. Here we analyzed localization, membrane topology, and trafficking of PON2 a member of the paraoxonase family of 3 enzymatically active proteins (PON1-3) found to have antiatherogenic properties. Immunohistochemistry localized PON2 to the villous tip of human intestinal epithelial cells. Employing membrane preparations, surface biotinylation experiments, and mutational analyses in HEK 293T and HeLa cells, we demonstrate that PON2 is a type II transmembrane protein. A hydrophobic stretch in the N terminus was identified as single transmembrane domain of PON2. The enzymatically active domain faced the extracellular compartment, where it suppressed lipid peroxidation (P<0.05) and regulated the glucosylceramide content, as demonstrated by mass spectrometry (P<0.05). PON2 translocation to the plasma membrane was dependent on intracellular calcium responses and could be induced to >10-fold as compared to baseline (P=0.0001) by oxidative stress. Taken together, these data identify the paraoxonase protein PON2 as a type II transmembrane protein, which is dynamically translocated to the plasma membrane in response to oxidative stress to counteract lipid peroxidation.
Asunto(s)
Arildialquilfosfatasa/metabolismo , Membrana Celular/metabolismo , Peroxidación de Lípido , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Arildialquilfosfatasa/genética , Calcio/metabolismo , Células Epiteliales/enzimología , Glucosilceramidas/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunohistoquímica , Intestinos/citología , Intestinos/enzimología , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Estrés Oxidativo , Transporte de Proteínas , Interferencia de ARNRESUMEN
BACKGROUND & AIMS: To determine if diabetic and insulin-resistant states cause mitochondrial dysfunction in liver or if there is long term adaptation of mitochondrial function to these states, mice were (i) fed with a high-fat diet to induce obesity and T2D (HFD), (ii) had a genetic defect in insulin signaling causing whole body insulin resistance, but not full blown T2D (IR/IRS-1(+/-) mice), or (iii) were analyzed after treatment with streptozocin (STZ) to induce a T1D-like state. METHODS: Hepatic lipid levels were measured by thin layer chromatography. Mitochondrial respiratory chain (RC) levels and function were determined by Western blot, spectrophotometric, oxygen consumption and proton motive force analysis. Gene expression was analyzed by real-time PCR and microarray. RESULTS: HFD caused insulin resistance and hepatic lipid accumulation, but RC was largely unchanged. Livers from insulin resistant IR/IRS-1(+/-) mice had normal lipid contents and a normal RC, but mitochondria were less well coupled. Livers from severely hyperglycemic and hypoinsulinemic STZ mice had massively depleted lipid levels, but RC abundance was unchanged. However, liver mitochondria isolated from these animals showed increased abundance and activity of the RC, which was better coupled. CONCLUSIONS: Insulin resistance, induced either by obesity or genetic manipulation and steatosis do not cause mitochondrial dysfunction in mouse liver. Also, mitochondrial dysfunction is not a prerequisite for liver steatosis. However, severe insulin deficiency and high blood glucose levels lead to an enhanced performance and better coupling of the RC. This may represent an adaptation to fuel overload and the high energy-requirement of an unsuppressed gluconeogenesis.
Asunto(s)
Adaptación Fisiológica , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina/fisiología , Mitocondrias Hepáticas/fisiología , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/fisiopatología , Expresión Génica , Proteínas Sustrato del Receptor de Insulina/deficiencia , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Canales Iónicos/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Fosforilación Oxidativa , Fuerza Protón-Motriz , Receptor de Insulina/deficiencia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal , Proteína Desacopladora 2RESUMEN
Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.