Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 15, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166627

RESUMEN

The sacred datura plant (Solanales: Solanaceae: Datura wrightii) has been used to study plant-herbivore interactions for decades. The wealth of information that has resulted leads it to have potential as a model system for studying the ecological and evolutionary genomics of these interactions. We present a de novo Datura wrightii genome assembled using PacBio HiFi long-reads. Our assembly is highly complete and contiguous (N50 = 179Mb, BUSCO Complete = 97.6%). We successfully detected a previously documented ancient whole genome duplication using our assembly and have classified the gene duplication history that generated its coding sequence content. We use it as the basis for a genome-guided differential expression analysis to identify the induced responses of this plant to one of its specialized herbivores (Coleoptera: Chrysomelidae: Lema daturaphila). We find over 3000 differentially expressed genes associated with herbivory and that elevated expression levels of over 200 genes last for several days. We also combined our analyses to determine the role that different gene duplication categories have played in the evolution of Datura-herbivore interactions. We find that tandem duplications have expanded multiple functional groups of herbivore responsive genes with defensive functions, including UGT-glycosyltranserases, oxidoreductase enzymes, and peptidase inhibitors. Overall, our results expand our knowledge of herbivore-induced plant transcriptional responses and the evolutionary history of the underlying herbivore-response genes.


Asunto(s)
Escarabajos , Datura , Animales , Herbivoria , Duplicación de Gen , Datura/genética , Datura/metabolismo , Escarabajos/genética
2.
Ecol Lett ; 26(8): 1432-1451, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37303268

RESUMEN

Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.


Asunto(s)
Ecosistema , Simbiosis , Simbiosis/fisiología , Temperatura , Calentamiento Global , Fenotipo
3.
Am Nat ; 198(4): 441-459, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34559615

RESUMEN

AbstractResource dynamics influence the contemporary ecology of consumer-resource mutualisms. Suites of resource traits, such as floral nectar components, also evolve in response to different selective pressures, changing the ecological dynamics of the interacting species at the evolutionary equilibrium. Here we explore the evolution of resource-provisioning traits in a biotically pollinated plant that produces nectar as a resource for beneficial consumers. We develop a mathematical model describing natural selection on two quantitative nectar traits: maximum nectar production rate and maximum nectar reservoir volume. We use this model to examine how nectar production dynamics evolve under different ecological conditions that impose varying cost-benefit regimes on resource provisioning. The model results predict that natural selection favors higher nectar production when ecological factors limit the plant or pollinator's abundance (e.g., a lower productivity environment or a higher pollinator conversion efficiency). We also find that nectar traits evolve as a suite in which higher costs of producing one trait select for a compensatory increase in investment in the other trait. This empirically explicit approach to studying the evolution of consumer-resource mutualisms illustrates how natural selection acting via direct and indirect pathways of species interactions generates patterns of resource provisioning seen in natural systems.


Asunto(s)
Polinización , Simbiosis , Flores , Néctar de las Plantas , Selección Genética
4.
Am J Bot ; 108(3): 402-410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33608867

RESUMEN

PREMISE: In addition to its role as the male gamete, pollen is often used as a food reward for pollinators. Roughly 20,000 species of angiosperms are strictly pollen-rewarding, providing no other rewards to their pollinators. However, the influence of this strategy on pollinator behavior and plant reproduction is poorly understood, especially relative to the nectar-reward strategy. We performed a field experiment using the strictly pollen-rewarding Lupinus argenteus to explore how the absence of nectar influences pollinator behavior and plant reproduction. METHODS: We added artificial nectar to Lupinus argenteus individuals to simulate a phenotype that would reward pollinators with both nectar and pollen. We compared bee pollinator behavior, via direct observation, and female reproduction between nectar-added and nectarless control plants. RESULTS: Bees exhibited behavioral responses to the novel reward, collecting nectar as well as pollen and spending 27% longer per flower. Pollen transfer increased with flower visit duration. However, plants in the study population were not pollen-limited; consequently, the observed changes in pollinator behavior did not result in changes in female components of plant reproduction. CONCLUSIONS: The addition of nectar to pollen-rewarding plants resulted in modest increases in per-flower pollinator visit duration and pollen transfer, but had no effect on reproduction because, at the place and time the experiment was conducted, plants were not pollen-limited. These results suggest that a pollen-only reward strategy may allow plants that are visited by pollen foragers to minimize some costs of reproduction by eliminating investment in other rewards, such as nectar, without compromising female plant fitness.


Asunto(s)
Lupinus , Néctar de las Plantas , Animales , Abejas , Femenino , Flores , Humanos , Masculino , Polen , Polinización , Reproducción , Recompensa
5.
Ecol Lett ; 23(7): 1137-1152, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32394591

RESUMEN

Indirect defence, the adaptive top-down control of herbivores by plant traits that enhance predation, is a central component of plant-herbivore interactions. However, the scope of interactions that comprise indirect defence and associated ecological and evolutionary processes has not been clearly defined. We argue that the range of plant traits that mediate indirect defence is much greater than previously thought, and we further organise major concepts surrounding their ecological functioning. Despite the wide range of plant traits and interacting organisms involved, indirect defences show commonalities when grouped. These categories are based on whether indirect defences boost natural enemy abundance via food or shelter resources, or, alternatively, increase natural enemy foraging efficiency via information or alteration of habitat complexity. The benefits of indirect defences to natural enemies should be further explored to establish the conditions in which indirect defence generates a plant-natural enemy mutualism. By considering the broader scope of plant-herbivore-natural enemy interactions that comprise indirect defence, we can better understand plant-based food webs, as well as the evolutionary processes that have shaped them.


Asunto(s)
Insectos , Plantas , Animales , Ecosistema , Cadena Alimentaria , Herbivoria
6.
J Theor Biol ; 501: 110334, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32492378

RESUMEN

Species often interact with multiple mutualistic partners that provide functionally different benefits and/or that interact with different life-history stages. These functionally different partners, however, may also interact directly with one another in other ways, indirectly altering net outcomes and persistence of the mutualistic system as a whole. We present a population dynamical model of a three-species system involving antagonism between species sharing a mutualist partner species with two explicit life stages. We find that, regardless of whether the antagonism is predatory or non-consumptive, persistence of the shared mutualist is possible only under a restrictive set of conditions. As the rate of antagonism between the species sharing the mutualist increases, indirect rather than direct interactions increasingly determine species' densities and sometimes result in complex, oscillatory dynamics for all species. Surprisingly, persistence of the mutualistic system is particularly dependent upon the degree to which each of the two mutualistic interactions is specialized. Our work investigates a novel mechanism by which changing ecological conditions can lead to extinction of mutualist partners and provides testable predictions regarding the interactive roles of mutualism and antagonism in net outcomes for species' densities.


Asunto(s)
Ecosistema , Simbiosis , Modelos Biológicos , Dinámica Poblacional
7.
PLoS Biol ; 14(2): e1002371, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26841169

RESUMEN

Exploitation in cooperative interactions both within and between species is widespread. Although it is assumed to be costly to be exploited, mechanisms to control exploitation are surprisingly rare, making the persistence of cooperation a fundamental paradox in evolutionary biology and ecology. Focusing on between-species cooperation (mutualism), we hypothesize that the temporal sequence in which exploitation occurs relative to cooperation affects its net costs and argue that this can help explain when and where control mechanisms are observed in nature. Our principal prediction is that when exploitation occurs late relative to cooperation, there should be little selection to limit its effects (analogous to "tolerated theft" in human cooperative groups). Although we focus on cases in which mutualists and exploiters are different individuals (of the same or different species), our inferences can readily be extended to cases in which individuals exhibit mixed cooperative-exploitative strategies. We demonstrate that temporal structure should be considered alongside spatial structure as an important process affecting the evolution of cooperation. We also provide testable predictions to guide future empirical research on interspecific as well as intraspecific cooperation.


Asunto(s)
Simbiosis , Animales , Factores de Tiempo
8.
J Anim Ecol ; 88(7): 971-985, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30921474

RESUMEN

Intraspecific variation in floral visitor behaviour and pollination efficiency has been much less studied than interspecific variation. Nevertheless, it is clear that large differences in these traits exist within species, and in particular between sexes within species. With the exception of a few well-studied interactions, however, the consequences of these differences in the pollinators and visited plants remain to be investigated. In this review, we document large and consistent differences in the foraging patterns of male and female pollinators that have been demonstrated to directly affect plant reproduction or that have clear potential to do so. Males and females differ in visitation frequency, type of flowers visited, and per-visit pollen transfer. Females gather more and different resources from flowers compared to males, and males generally tend to show more mobile foraging patterns than females. We argue that these sex-associated patterns have broad generality across pollinators, and that sex-associated differences can in some cases be larger than differences between species. We offer predictions about how these patterns will influence pollinator preference, specialization, and fidelity, as well as the cost, quality and quantity of pollination service to plants. In the face of increasing threats to plant-pollinator interactions, understanding their basic functioning and the variation inherent in their component parts is critical. We advocate for more attention to sex-based differences among pollinators in particular, and the consequences of intraspecific variation more broadly.


Asunto(s)
Polinización , Simbiosis , Animales , Femenino , Flores , Masculino , Plantas , Polen
9.
Am Nat ; 192(6): 655-663, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30444652

RESUMEN

Women have long been underrepresented in the natural sciences, and although great progress has been made in recent decades, many subtle and not-so-subtle barriers persist. In this context, it is easy to get the impression that the early history of ecology and evolutionary biology was exclusively the domain of male researchers. In fact, a number of women made very substantial contributions to The American Naturalist in its first decades. In a follow-up to a series of retrospective essays celebrating 150 years of this journal, we highlight the scientific contributions of the women published in it during its first 50 years (1867-1916). We also discuss the diverse paths that their scientific careers took and the barriers they faced along the way.


Asunto(s)
Disciplinas de las Ciencias Naturales/historia , Publicaciones Periódicas como Asunto/historia , Femenino , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Sexismo , Mujeres/historia
10.
Ecology ; 99(8): 1815-1824, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29800495

RESUMEN

Many mutualisms are taken advantage of by organisms that take rewards from their partners but provide no benefit in return. In the absence of traits that limit exploitation, facultative exploiters (partners that can either exploit or cooperate) are widely predicted by mutualism theory to choose an exploitative strategy, potentially threatening mutualism stability. However, it is unknown whether facultative exploiters choose to exploit, and, if so, make this choice because it is the most beneficial strategy for them. We explored these questions in a subalpine plant-insect community in which individuals of several bumble bee species visit flowers both "legitimately" (entering via the flower opening, picking up and depositing pollen, and hence behaving mutualistically) and via nectar robbing (creating holes through corollas or using an existing hole, bypassing stigmas and anthers). We applied foraging theory to (1) quantify handling costs, benefits and foraging efficiencies incurred by three bumble bee species as they visited flowers legitimately or robbed nectar in cage experiments, and (2) determine whether these efficiencies matched the food handling tactics these bee species employed in the field. Relative efficiencies of legitimate and robbing tactics depended on the combination of bee and plant species. In some cases (Bombus mixtus visiting Corydalis caseana or Mertensia ciliata), the robbing tactic permitted more efficient nectar removal. As both mutualism and foraging theory would predict, in the field, B. mixtus visiting C. caseana were observed more frequently robbing than foraging legitimately. However, for Bombus flavifrons visiting M. ciliata, the expectation from mutualism theory did not hold: legitimate visitation was the more efficient tactic. Legitimate visitation to M. ciliata was in fact more frequently observed in free-flying B. flavifrons. Free-flying B. mixtus also frequently visited M. ciliata flowers legitimately. This may reflect lower nectar volumes in robbed than unrobbed flowers in the field. These results suggest that a foraging ecology perspective is informative to the choice of tactics facultative exploiters make. In contrast, the simple expectation that exploiters should always have an advantage, and hence could threaten mutualism persistence unless they are deterred or punished, may not be broadly applicable.


Asunto(s)
Polinización , Simbiosis , Animales , Abejas , Análisis Costo-Beneficio , Flores , Manipulación de Alimentos , Néctar de las Plantas
11.
Am J Bot ; 105(5): 943-949, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29797579

RESUMEN

PREMISE OF THE STUDY: Organisms engage in multiple species interactions simultaneously. While pollination studies generally focus on plants and pollinators exclusively, secondary robbing, a behavior that requires other species (primary robbers) to first create access holes in corollas, is common. It has been shown that secondary robbing can reduce plants' female fitness; however, we lack knowledge about its impact on male plant fitness. METHODS: We experimentally simulated primary and secondary robbing in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae), quantifying indirect effects on pollinator-mediated pollen (dye) donation. We also assessed whether continual nectar removal via the floral opening has similar effects on hummingbird-pollinator behavior as continual secondary robbing through robber holes. KEY RESULTS: We found no significant indirect effects of secondary robbing on a component of Ipomopsis male fitness. Although robbing did reduce pollen (dye) donation due to avoidance of robbed plants by pollinating hummingbirds, pollen donation did not differ between the two robbing treatments. The effects of secondary robbing on hummingbird behavior resembled effects of chronic nectar removal by pollinators. Our results indicate that hummingbird pollinators may use a combination of cues, including cues given by the presence or absence of nectar, to make foraging decisions. CONCLUSIONS: Combined with prior research, this study suggests that secondary robbing is less costly to a component of male fitness than to female fitness in Ipomopsis, broadening our knowledge of the overall costs of mutualism exploitation to total plant fitness.


Asunto(s)
Ericales/fisiología , Aptitud Genética/fisiología , Néctar de las Plantas/fisiología , Polinización , Animales , Aves/fisiología , Ericales/genética , Conducta Alimentaria , Flores/fisiología , Reproducción
12.
Oecologia ; 186(2): 471-482, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222720

RESUMEN

Parasitic plants often attack multiple host species with unique defenses, physiology, and ecology. Reproductive phenology and vectors of parasitic plant genes (pollinators and dispersers) can contribute to or erode reproductive isolation of populations infecting different host species. We asked whether desert mistletoe, Phoradendron californicum (Santalaceae tribe Visceae syn. Viscaceae), differs ecologically across its dominant leguminous hosts in ways affecting reproductive isolation. Parasite flowering phenology on one host species (velvet mesquite, Prosopis velutina) differed significantly from that on four others, and phenology was not predicted by host species phenology or host individual. Comparing mistletoe populations on mesquite and another common host species (catclaw acacia, Senegalia greggii) for which genetically distinct host races are known, we tested for differences in interactions with vectors by quantifying pollinator visitation, reward production, pollen receipt, and fruit consumption. Mistletoes on mesquite produced more pollinator rewards per flower (1.86 times the nectar and 1.92 times the pollen) and received ~ 2 more pollen grains per flower than those on acacia. Mistletoes on the two host species interacted with distinct but overlapping pollinator communities, and pollinator taxa differed in visitation according to host species. Yet, mistletoes of neither host showed uniformly greater reproductive success. Fruit set (0.70) did not differ by host, and the rates of fruit ripening and removal differed in contrasting ways. Altogether, we estimate strong but asymmetric pre-zygotic isolating barriers between mistletoes on the two hosts. These host-associated differences in reproduction have implications for interactions with mutualist vectors and population genetic structure.


Asunto(s)
Polinización , Reproducción , Ecología , Flores , Néctar de las Plantas
13.
Ecol Lett ; 20(3): 385-394, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28156041

RESUMEN

Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored.


Asunto(s)
Aves/fisiología , Insectos/fisiología , Magnoliopsida/fisiología , Polinización , Animales , Colorado , Conducta Alimentaria , Estaciones del Año , Especificidad de la Especie
14.
Ecol Lett ; 18(11): 1270-1284, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26388306

RESUMEN

Cheating is a focal concept in the study of mutualism, with the majority of researchers considering cheating to be both prevalent and highly damaging. However, current definitions of cheating do not reliably capture the evolutionary threat that has been a central motivation for the study of cheating. We describe the development of the cheating concept and distill a relative-fitness-based definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that cheaters will spread and erode the benefits of mutualism. We then describe experiments required to conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we discuss how our definition and methods can generate comparability and integration of theory and experiments, which are currently divided by their respective prioritisations of fitness consequences and traits. To evaluate the current empirical evidence for cheating, we review the literature on several of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters. Finally, we highlight future directions for research on conflict in mutualisms, including novel research avenues opened by a relative-fitness-based definition of cheating.

15.
Oecologia ; 179(2): 435-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26003308

RESUMEN

The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.


Asunto(s)
Hormigas/fisiología , Conducta Animal , Cactaceae/crecimiento & desarrollo , Animales , Frutas/crecimiento & desarrollo , Herbivoria , Dinámica Poblacional , Crecimiento Demográfico , Simbiosis
16.
Ecol Lett ; 17(7): 881-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24735225

RESUMEN

The net effects of interspecific species interactions on individuals and populations vary in both sign (-, 0, +) and magnitude (strong to weak). Interaction outcomes are context-dependent when the sign and/or magnitude change as a function of the biotic or abiotic context. While context dependency appears to be common, its distribution in nature is poorly described. Here, we used meta-analysis to quantify variation in species interaction outcomes (competition, mutualism, or predation) for 247 published articles. Contrary to our expectations, variation in the magnitude of effect sizes did not differ among species interactions, and while mutualism was most likely to change sign across contexts (and predation least likely), mutualism did not strongly differ from competition. Both the magnitude and sign of species interactions varied the most along spatial and abiotic gradients, and least as a function of the presence/absence of a third species. However, the degree of context dependency across these context types was not consistent among mutualism, competition and predation studies. Surprisingly, study location and ecosystem type varied in the degree of context dependency, with laboratory studies showing the highest variation in outcomes. We urge that studying context dependency per se, rather than focusing only on mean outcomes, can provide a general method for describing patterns of variation in nature.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Conducta Predatoria , Simbiosis
17.
Oecologia ; 176(1): 129-38, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25012597

RESUMEN

Mutualism is an often complex interaction among multiple species, each of which may respond differently to abiotic conditions. The effects of temperature on the formation, dissolution, and success of these and other species interactions remain poorly understood. We studied the thermal ecology of the mutualism between the cactus Ferocactus wislizeni and its ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plants and, in exchange, protect the plants from herbivores; there is a hierarchy of mutualist effectiveness based on aggression toward herbivores. We determined the relationship between temperature and ant activity on plants, the thermal tolerance of each ant species, and ant activity in relation to the thermal environment of plants. Temperature played a role in determining which species interact as mutualists. Three of the four ant species abandoned the plants during the hottest part of the day (up to 40 °C), returning when surface temperature began to decrease in the afternoon. The least effective ant mutualist, F. pruinosus, had a significantly higher critical thermal maximum than the other three species, was active across the entire range of plant surface temperatures observed (13.8-57.0 °C), and visited plants that reached the highest temperatures. F. pruinosus occupied some plants full-time and invaded plants occupied by more dominant species when those species were thermally excluded. Combining data on thermal tolerance and mutualist effectiveness provides a potentially powerful tool for predicting the effects of temperature on mutualisms and mutualistic species.


Asunto(s)
Aclimatación/fisiología , Hormigas/fisiología , Cactaceae/fisiología , Modelos Biológicos , Actividad Motora/fisiología , Simbiosis/fisiología , Animales , Arizona , Clima Desértico , Calor , Observación , Especificidad de la Especie
18.
Biotropica ; 46(2): 202-209, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24659825

RESUMEN

Habitat destruction threatens biodiversity by reducing the amount of available resources and connectivity among geographic areas. For organisms living in fragmented habitats, population persistence may depend on dispersal, which maintains gene flow among fragments and can prevent inbreeding within them. It is centrally important to understand patterns of dispersal for bees living in fragmented areas given the importance of pollination systems and recently documented declines in bee populations. We used population and landscape genetic techniques to characterize patterns of dispersal over a large fragmented area in southern Costa Rica for the orchid bee species Euglossa championi. First, we estimated levels of genetic differentiation among forest fragments as φpt, an analog to the traditional summary statistic Fst, as well as two statistics that may more adequately represent levels of differentiation, G'st and Dest . Second, we used a Bayesian approach to determine the number and composition of genetic groups in our sample. Third we investigated how genetic differentiation changes with distance. Fourth, we determined the extent to which deforested areas restrict dispersal. Finally, we estimated the extent to which there were temporal differences in allele frequencies within the same forest fragments. Within years we found low levels of differentiation even over 80 km, and no effect of land use type on level of genetic differentiation. However, we found significant genetic differentiation between years. Taken together our results suggest that there are high levels of gene flow over this geographic area, and that individuals show low site fidelity over time.

19.
Mol Ecol ; 22(15): 3882-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24058927

RESUMEN

Mutualisms, cooperative interactions between species, generally involve an economic exchange: species exchange commodities that are cheap for them to provide, for ones that cannot be obtained affordably or at all. But these associations can only succeed if effective partners can be enticed to interact. In some mutualisms, partners can actively seek one another out. However, plants, which use mutualists for a wide array of essential life history functions, do not have this option. Instead, natural selection has repeatedly favoured the evolution of rewards ­ nutritional substances (such as sugar-rich nectar and fleshy fruit) with which plants attract certain organisms whose feeding activities can then be co-opted for their own benefit. The trouble with rewards, however, is that they are usually also attractive to organisms that confer no benefits at all. Losing rewards to 'exploiters' makes a plant immediately less attractive to the mutualists it requires; if the reward cannot be renewed quickly (or at all), then mutualistic service is precluded entirely. Thus, it is in plants' interests to either restrict rewards to only the most beneficial partners or somehow punish or deter exploiters. Yet, at least in cases where the rewards are highly nutritious, we can expect counter-selection for exploiter traits that permit them to skirt such control. How, then, can mutualisms persist? In this issue, Orona-Tamayo et al. () describe a remarkable adaptation that safeguards one particularly costly reward from nonmutualists. Their study helps to explain the evolutionary success of an iconic interaction and illuminates one way in which mutualism as a whole can persist in the face of exploitation.


Asunto(s)
Acacia/enzimología , Hormigas/enzimología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Simbiosis/fisiología , Animales
20.
Artículo en Inglés | MEDLINE | ID: mdl-23756587

RESUMEN

The foraging decisions of flower-visiting animals are contingent upon the need of an individual to meet both energetic and osmotic demands. Insects can alter their food preferences to prioritize one need over the other, depending on environmental conditions. In this study, preferences in nectar sugar concentrations (0, 12, 24 %) were tested in the hawkmoth Manduca sexta, in response to different levels of ambient humidity (20, 40, 60, and 80 % RH). Moths altered their foraging behavior when placed in low humidity environments by increasing the volume of nectar imbibed and by consuming more dilute nectar. When placed in high humidity environments the total volume imbibed decreased, because moths consumed less from dilute nectars (water and 12 % sucrose). Survivorship was higher with higher humidity. Daily foraging patterns changed with relative humidity (RH): moths maximized their nectar consumption earlier, at lower humidities. Although ambient humidity had an impact on foraging activity, activity levels and nectar preferences, total energy intake was not affected. These results show that foraging decisions made by M. sexta kept under different ambient RH levels allow individuals to meet their osmotic demands while maintaining a constant energy input.


Asunto(s)
Conducta Alimentaria/fisiología , Vuelo Animal/fisiología , Humedad , Manduca/fisiología , Análisis de Varianza , Animales , Preferencias Alimentarias/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA