Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(22): 9548-9558, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38778038

RESUMEN

Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.


Asunto(s)
Agua Dulce , Toxicocinética , Pez Cebra , Animales , Agua Dulce/química , Contaminantes Químicos del Agua/toxicidad , Daphnia/efectos de los fármacos , Neonicotinoides/toxicidad
2.
Environ Sci Technol ; 58(3): 1473-1483, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38205949

RESUMEN

Though toxins produced during harmful blooms of cyanobacteria present diverse risks to public health and the environment, surface water quality surveillance of cyanobacterial toxins is inconsistent, spatiotemporally limited, and routinely relies on ELISA kits to estimate total microcystins (MCs) in surface waters. Here, we employed liquid chromatography tandem mass spectrometry to examine common cyanotoxins, including five microcystins, three anatoxins, nodularin, cylindrospermopsin, and saxitoxin in 20 subtropical reservoirs spatially distributed across a pronounced annual rainfall gradient. Probabilistic environmental hazard analyses identified whether water quality values for cyanotoxins were exceeded and if these exceedances varied spatiotemporally. MC-LR was the most common congener detected, but it was not consistently observed with other toxins, including MC-YR, which was detected at the highest concentrations during spring with many observations above the California human recreation guideline (800 ng/L). Cylindrospermopsin was also quantitated in 40% of eutrophic reservoirs; these detections did not exceed a US Environmental Protection Agency swimming/advisory level (15,000 ng/L). Our observations have implications for routine water quality monitoring practices, which traditionally use ELISA kits to estimate MC levels and often limit collection of surface samples during summer months near reservoir impoundments, and further indicate that spatiotemporal surveillance efforts are necessary to understand cyanotoxins risks when harmful cyanobacteria blooms occur throughout the year.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Humanos , Microcistinas/análisis , Calidad del Agua , Toxinas Marinas , Toxinas Bacterianas/análisis , Agua Dulce/análisis , Agua Dulce/química , Agua Dulce/microbiología , Toxinas de Cianobacterias , Cianobacterias/química , Monitoreo del Ambiente/métodos
3.
Environ Sci Technol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696305

RESUMEN

Identifying causative toxicants in mixtures is critical, but this task is challenging when mixtures contain multiple chemical classes. Effect-based methods are used to complement chemical analyses to identify toxicants, yet conventional bioassays typically rely on an apical and/or single endpoint, providing limited diagnostic potential to guide chemical prioritization. We proposed an event-driven taxonomy framework for mixture risk assessment that relied on high-throughput screening bioassays and toxicant identification integrated by deep learning. In this work, the framework was evaluated using chemical mixtures in sediments eliciting aryl-hydrocarbon receptor activation and oxidative stress response. Mixture prediction using target analysis explained <10% of observed sediment bioactivity. To identify additional contaminants, two deep learning models were developed to predict fingerprints of a pool of bioactive substances (event driver fingerprint, EDFP) and convert these candidates to MS-readable information (event driver ion, EDION) for nontarget analysis. Two libraries with 121 and 118 fingerprints were established, and 247 bioactive compounds were identified at confidence level 2 or 3 in sediment extract using GC-qToF-MS. Among them, 12 toxicants were analytically confirmed using reference standards. Collectively, we present a "bioactivity-signature-toxicant" strategy to deconvolute mixtures and to connect patchy data sets and guide nontarget analysis for diverse chemicals that elicit the same bioactivity.

4.
Limnol Oceanogr ; 68(2): 348-360, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36819961

RESUMEN

Harmful cyanobacterial blooms are an increasing threat to water quality. The interactions between two eco-physiological functional traits of cyanobacteria, diazotrophy (nitrogen (N)-fixation) and N-rich cyanotoxin synthesis, have never been examined in a stoichiometric explicit manner. We explored how a gradient of resource N:phosphorus (P) affects the biomass, N, P stoichiometry, light-harvesting pigments, and cylindrospermopsin production in a N-fixing cyanobacterium, Aphanizomenon. Low N:P Aphanizomenon cultures produced the same biomass as populations grown in high N:P cultures. The biomass accumulation determined by carbon, indicated low N:P Aphanizomenon cultures did not have a N-fixation growth tradeoff, in contrast to some other diazotrophs that maintain stoichiometric N homeostasis at the expense of growth. However, N-fixing Aphanizomenon populations produced less particulate cylindrospermopsin and had undetectable dissolved cylindrospermopsin compared to non-N-fixing populations. The pattern of low to high cyanotoxin cell quotas across an N:P gradient in the diazotrophic cylindrospermopsin producer is similar to the cyanotoxin cell quota response in non-diazotrophic cyanobacteria. We suggest that diazotrophic cyanobacteria may be characterized into two broad functional groups, the N-storage-strategists and the growth-strategists, which use N-fixation differently and may determine patterns of bloom magnitude and toxin production in nature.

5.
Environ Sci Technol ; 56(16): 11547-11558, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35896009

RESUMEN

Chemicals with elevated bioaccumulation profiles present potential hazards to public health and the environment. Ionizable organic compounds (IOCs) increasingly represent a large proportion of commercial chemicals; however, historical approaches for bioaccumulation determinations are mainly developed for neutral chemicals, which were not appropriate for IOCs. Herein, we employed the zebrafish embryo, a common vertebrate model in environmental and biomedical studies, to elucidate toxicokinetics and bioconcentration of eight IOCs with diverse physicochemical properties and pharmacokinetic parameters. At an environmentally relevant pH (7.5), most IOCs exhibited rapid uptake and depuration in zebrafish, suggesting the ionized forms of IOCs are readily bioavailable. Bioconcentration factors (BCF) of these IOCs ranged from 0.0530 to 250 L·kg-1 wet weight. The human pharmacokinetic proportionality factor, apparent volume of distribution (VD), better predicted the BCF of selected IOCs than more commonly used hydrophobicity-based parameters (e.g., pH-dependent octanol-water distribution ratio, Dow). Predictive bioaccumulation models for IOCs were constructed and validated using VD alone or with Dow. Significant relationships between fish BCF and human VD, which is readily available for pharmaceuticals, highlighted the utility of biologically based "read-across" approaches for predicting bioaccumulative potential of IOCs. Our novel findings thus provided an understanding of the partitioning behavior and improved predictive bioconcentration modeling for IOCs.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Bioacumulación , Humanos , Compuestos Orgánicos/química , Toxicocinética , Contaminantes Químicos del Agua/química
6.
Environ Sci Technol ; 56(17): 12494-12505, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36006007

RESUMEN

Neonicotinoid insecticides have attracted worldwide attention due to their ubiquitous occurrence and detrimental effects on aquatic organisms, yet their impacts on fish reproduction during long-term exposure remain unknown. Here, zebrafish (F0) were exposed to a neonicotinoid, acetamiprid, at 0.19-1637 µg/L for 154 d. Accumulation and biotransformation of acetamiprid were observed in adult fish, and the parent compound and its metabolite (acetamiprid-N-desmethyl) were transferred to their offspring. Acetamiprid caused slight survival reduction and significant feminization in F0 fish even at the lowest concentration. Hormone levels in F0 fish were remarkedly altered, that is, gonad 17ß-estradiol (E2) significantly increased, while androstenedione decreased. The corresponding transcription of steroidogenic genes (ar, cyp19b, fshß, gnrh2, gnrh3, and lhß) were significantly upregulated in the brain and gonad of the females but downregulated in the males. The vtg1 gene expression in the liver of male fish was also upregulated. In addition to F0 fish, parental exposure to acetamiprid decreased hatchability and enhanced malformation of F1 embryos. Chronic exposure to acetamiprid at environmentally relevant concentrations altered hormone production and the related gene expression of the hypothalamic-pituitary-gonad (HPG) axis in a sex-dependent way, caused feminization and reproductive dysfunction in zebrafish, and impaired production and development of their offspring.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Femenino , Feminización/inducido químicamente , Feminización/metabolismo , Gónadas , Humanos , Insecticidas/metabolismo , Insecticidas/toxicidad , Masculino , Neonicotinoides/toxicidad , Reproducción , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
7.
Arch Environ Contam Toxicol ; 83(2): 180-192, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35976388

RESUMEN

Salinization of aquatic systems is an emerging global issue projected to increase in magnitude, frequency, and duration with climate change and landscape modifications. To consider influences of salinity on locomotor activity of common fish models, we examined behavioral response profiles of two species, zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), across a gradient of sodium chloride. Following each experiment, behavior was recorded with automated tracking software and then behavioral response variables, including locomotor (e.g., distance traveled, number of movements, duration of movements) and photolocomotor changes, were examined at several speed thresholds (bursting, cruising, freezing) to identify potential salinity responses. Zebrafish responses were significantly (p < 0.05) reduced at the highest treatment level (5.78 g/L) for multiple behavioral endpoints during both dark and light phases; however, fathead minnow responses were more variable and not consistently concentration dependent. Future efforts are needed to understand behavioral response profiles in combination with anthropogenic contaminants and natural toxins across the freshwater to marine continuum, considering salinization of inland waters, sea level rise, and transport of anthropogenic contaminants and algal toxins from inland waters to coastal systems.


Asunto(s)
Cyprinidae , Pez Cebra , Animales , Cyprinidae/fisiología , Agua Dulce , Larva/fisiología , Salinidad
8.
J Exp Biol ; 224(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229347

RESUMEN

Illicit drug abuse presents pervasive adverse consequences for human societies around the world. Illicit drug consumption also plays an unexpected role in contamination of aquatic ecosystems that receive wastewater discharges. Here, we show that methamphetamine, considered as one of the most important global health threats, causes addiction and behavior alteration of brown trout Salmo trutta at environmentally relevant concentrations (1 µg l-1). Altered movement behavior and preference for methamphetamine during withdrawal were linked to drug residues in fish brain tissues and accompanied by brain metabolome changes. Our results suggest that emission of illicit drugs into freshwater ecosystems causes addiction in fish and modifies habitat preferences with unexpected adverse consequences of relevance at the individual and population levels. As such, our study identifies transmission of human societal problems to aquatic ecosystems.


Asunto(s)
Metanfetamina , Contaminantes Químicos del Agua , Animales , Ecosistema , Humanos , Metanfetamina/efectos adversos , Trucha , Contaminantes Químicos del Agua/toxicidad
9.
Environ Sci Technol ; 55(13): 8977-8986, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34142809

RESUMEN

Selection of toxicity endpoints affects outcomes of risk assessment. Scientific decisions based on more holistic evidence is preferable for designing bioassay batteries rather than subjective selections, particularly when systems are poorly understood. Here, we propose a novel event-driven taxonomy (EDT)-based text mining tool to prioritize stressors likely to elicit water quality deterioration. The tool integrated automated literature collection, natural language processing using adverse outcome pathway-based toxicological terminologies and machine learning to classify event drivers (EDs). From aquatic toxicity assessments within China over the past decade, we gathered over 14 000 sources of information. With a dictionary that included 1039 toxicological terms, 15 bioassay-related modes of actions were mapped, yet less than half of the bioassays could be elucidated by available adverse outcome pathways. To fill these mechanistic knowledge gaps, we developed a Naïve Bayesian ED-classifier to annotate apical responses. The classifier's 4-fold cross-validation reached 74% accuracy and labeled 85% bioassays as 26 EDs. Narcosis, estrogen receptor-, and aryl hydrogen receptor-mediators were the major EDs in aquatic systems across China, whereas individual regions had distinct ED fingerprints. The EDT-based tool provides a promising diagnostic strategy to inform region-specific bioassay design and selection for water quality assessments in a big data era.


Asunto(s)
Minería de Datos , Calidad del Agua , Teorema de Bayes , Bioensayo , China
10.
Environ Sci Technol ; 55(9): 5620-5628, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33851533

RESUMEN

For decades, we have known that chemicals affect human and wildlife behavior. Moreover, due to recent technological and computational advances, scientists are now increasingly aware that a wide variety of contaminants and other environmental stressors adversely affect organismal behavior and subsequent ecological outcomes in terrestrial and aquatic ecosystems. There is also a groundswell of concern that regulatory ecotoxicology does not adequately consider behavior, primarily due to a lack of standardized toxicity methods. This has, in turn, led to the exclusion of many behavioral ecotoxicology studies from chemical risk assessments. To improve understanding of the challenges and opportunities for behavioral ecotoxicology within regulatory toxicology/risk assessment, a unique workshop with international representatives from the fields of behavioral ecology, ecotoxicology, regulatory (eco)toxicology, neurotoxicology, test standardization, and risk assessment resulted in the formation of consensus perspectives and recommendations, which promise to serve as a roadmap to advance interfaces among the basic and translational sciences, and regulatory practices.


Asunto(s)
Conservación de los Recursos Naturales , Ecotoxicología , Animales , Animales Salvajes , Ecosistema , Humanos , Medición de Riesgo
11.
Chem Res Toxicol ; 33(2): 426-435, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31858786

RESUMEN

The transcription factor Nrf2a induces a cellular antioxidant response and provides protection against chemical-induced oxidative stress, as well as playing a critical role in development and disease. Zebrafish are a powerful model to study the role of Nrf2a in these processes but have been limited by reliance on transient gene knockdown techniques or mutants with only partial functional alteration. We developed several lines of zebrafish carrying different null (loss of function, LOF) or hyperactive (gain of function, GOF) mutations to facilitate our understanding of the Nrf2a pathway in protecting against oxidative stress. The mutants confirmed Nrf2a dependence for induction of the antioxidant genes gclc, gstp, prdx1, and gpx1a and identified a role for Nrf2a in the baseline expression of these genes, as well as for sod1. Specifically, the 4-fold induction of gstp by tert-butyl hydroperoxide (tBHP) in wild type fish was abolished in LOF mutants. In addition, baseline gstp expression in GOF mutants increased by 12.6-fold and in LOF mutants was 0.8-fold relative to wild type. Nrf2a LOF mutants showed increased sensitivity to the acute toxicity of cumene hydroperoxide (CHP) and tBHP throughout the first 4 days of development. Conversely, GOF mutants were less sensitive to CHP toxicity during the first 4 days of development and were protected against the toxicity of both hydroperoxides after 4 dpf. Neither gain nor loss of Nrf2a modulated the toxicity of R-(-)-carvone (CAR), despite the ability of this compound to potently induce Nrf2a-dependent antioxidant genes. Similar to other species, GOF zebrafish mutants exhibited significant growth and survival defects. In summary, these new genetic tools can be used to facilitate the identification of downstream gene targets of Nrf2a, better define the role of Nrf2a in the toxicity of environmental chemicals, and further the study of diseases involving altered Nrf2a function.


Asunto(s)
Derivados del Benceno/toxicidad , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/efectos de los fármacos , Mutación con Ganancia de Función , Mutación con Pérdida de Función , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Proteínas de Pez Cebra/genética , Pez Cebra/genética , terc-Butilhidroperóxido/toxicidad , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Relación Dosis-Respuesta a Droga , Mutación con Ganancia de Función/efectos de los fármacos , Mutación con Pérdida de Función/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Proteínas de Pez Cebra/metabolismo
12.
Chem Res Toxicol ; 33(2): 367-380, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31789507

RESUMEN

Sustainable molecular design of less hazardous chemicals promises to reduce risks to public health and the environment. Computational chemistry modeling coupled with alternative toxicology models (e.g., larval fish) present unique high-throughput opportunities to understand structural characteristics eliciting adverse outcomes. Numerous environmental contaminants with reactive properties can elicit oxidative stress, an important toxicological response associated with diverse adverse outcomes (i.e., cancer, diabetes, neurodegenerative disorders, etc.). We examined a common chemical mechanism (bimolecular nucleophilic substitution (SN2)) associated with oxidative stress using property-based computational modeling coupled with acute (mortality) and sublethal (glutathione, photomotor behavior) responses in the zebrafish (Danio rerio) and the fathead minnow (Pimephales promelas) models to identify whether relationships exist among biological responses and molecular attributes of industrial chemicals. Following standardized methods, embryonic zebrafish and larval fathead minnows were exposed separately to eight different SN2 compounds for 96 h. Acute and sublethal responses were compared to computationally derived in silico chemical descriptors. Specifically, frontier molecular orbital energies were significantly related to acute LC50 values and photomotor response (PMR) no observed effect concentrations (NOECs) in both fathead minnow and zebrafish. This reactivity index, LC50 values, and PMR NOECs were also significantly related to whole body glutathione (GSH) levels, suggesting that acute and chronic toxicity results from protein adduct formation for SN2 electrophiles. Shared refractory locomotor response patterns among study compounds and two alternative vertebrate models appear informative of electrophilic properties associated with oxidative stress for SN2 chemicals. Electrophilic parameters derived from frontier molecular orbitals were predictive of experimental in vivo acute and sublethal toxicity. These observations provide important implications for identifying and designing less hazardous industrial chemicals with reduced potential to elicit oxidative stress through bimolecular nucleophilic substitution.


Asunto(s)
Modelos Animales de Enfermedad , Sustancias Peligrosas/toxicidad , Locomoción/efectos de los fármacos , Teoría Cuántica , Animales , Biomarcadores/análisis , Cyprinidae , Dosificación Letal Mediana , Estrés Oxidativo , Pruebas de Toxicidad , Pez Cebra
13.
Am J Public Health ; 110(3): 288-294, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944847

RESUMEN

An ever-changing landscape for environmental health (EH) requires in-depth assessment and analysis of the current challenges and emerging issues faced by EH professionals. The Understanding the Needs, Challenges, Opportunities, Vision, and Emerging Roles in Environmental Health initiative addressed this need.After receiving responses from more than 1700 practitioners, during an in-person workshop, focus groups identified and described priority problems and supplied context on addressing the significant challenges facing EH professionals with state health agencies and local health departments. The focus groups developed specific problem statements detailing the EH profession and workforce's prevailing challenges and needs according to 6 themes, including effective leadership, workforce development, equipment and technology, information systems and data, garnering support, and partnerships and collaboration.We describe the identified priority problems and needs and provide recommendations for ensuring a strong and robust EH profession and workforce ready to address tomorrow's challenges.


Asunto(s)
Salud Ambiental/organización & administración , Desarrollo de Personal , Recursos Humanos/normas , Grupos Focales , Humanos , Liderazgo , Evaluación de Necesidades
14.
Anal Bioanal Chem ; 412(18): 4353-4361, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32372276

RESUMEN

Recent state-of-the-art methods developed for the analysis of polar xenobiotics from different types of biological matrices usually employ liquid chromatography with mass spectrometry. However, there are limitations when a small amount of sample mass is available. For example, individual benthic invertebrates or fish tissue samples often weigh less than 100 mg (e.g., brain, liver) but are necessary to understand environmental fate and bioaccumulation dynamics. We developed ultra-fast methods based on a direct sample introduction technique. This included coupling laser diode thermal desorption with atmospheric pressure chemical ionization mass spectrometry (LDTD-APCI-MS). We then quantitated a common selective serotonin reuptake inhibitor (citalopram) in brain tissues of individual juvenile fish after in vivo exposure to environmentally relevant concentration. Two mass spectrometric methods based on low (LDTD-APCI-triple quadrupole (QqQ)-MS/MS) and high (LDTD-APCI-high-resolution product scan (HRPS)) resolutions were developed and evaluated. Individual instrument conditions were optimized to achieve an accurate and robust analytical method with minimum sample preparation requirements. We achieved very good recovery (97-108%) across the range of 1-100 ng g-1 for LDTD-APCI-HRPS. LDTD-APCI-QqQ-MS/MS showed poorer performance due to interferences from the matrix at the lowest concentration level. LDTD-APCI ionization was successfully validated for analysis of non-filtered sample extracts. Evaluation of final methods was performed for a set of real fish brain samples, including comparison of LDTD-APCI-HRPS with a previously validated LC-heated electrospray ionization-HRPS method. This new LDTD-APCI-HRPS method avoids the chromatographic step and provides important benefits such as analysis of limited sample masses, lower total sample volume (typically µL), and reduction in analysis time per sample run to a few seconds. Graphical abstract.


Asunto(s)
Antidepresivos de Segunda Generación/análisis , Química Encefálica , Citalopram/análisis , Oncorhynchus mykiss , Inhibidores Selectivos de la Recaptación de Serotonina/análisis , Contaminantes Químicos del Agua/análisis , Animales , Láseres de Semiconductores , Oncorhynchus mykiss/metabolismo , Alimentos Marinos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos
15.
Bull Environ Contam Toxicol ; 105(5): 692-698, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33040230

RESUMEN

Effluents from on-site wastewater treatment systems can influence surface water quality, particularly when infrastructure is aging, malfunctioning, and improperly installed. Municipal wastewater often contains chemical compounds that can lead to adverse biological effects, such as reproductive impairment, in organisms that are chronically exposed. A significant number of these compounds are endocrine-disrupting chemicals. Water quality influences of on-site systems are poorly studied in semi-arid regions where instream flows are seasonally dependent on snowmelt, and when instream dilution of wastewater effluents is minimal during other times of the year. Here we examined surface water estrogenicity in low order tributaries of two unique semi-arid streams with on-site wastewater treatment systems, for which seasonal instream flow fluctuations occur in Park City, UT, USA. Water samples were collected from a total of five locations along two lotic systems downstream from active on-site treatment systems. Samples were extracted for targeted chemical analyses and to perform in vivo and in vitro bioassays with juvenile rainbow trout. Estrogenic activity was measured by quantifying the concentration and expression of vitellogenin (VTG) in plasma and liver, respectively. Plasma VTG presented elevated levels in fish exposed to water samples collected at the two sites in close proximity to on-site systems and during seasons with low stream discharge, though the levels observed did not suggest severe endocrine disruption. However, long-term exposure to these surface water could compromise the fish populations. While the sensitivity of in vitro bioassays was low and targeted chemical analyses did not identify causative compounds, the use of complementary lines of evidence (e.g., in vivo biological models) was advantageous in identifying estrogenic activity in waters influenced by effluents from on-site wastewater systems.


Asunto(s)
Disruptores Endocrinos/toxicidad , Oncorhynchus mykiss/sangre , Ríos/química , Nieve/química , Vitelogeninas/sangre , Contaminantes Químicos del Agua/toxicidad , Animales , Ciudades , Disruptores Endocrinos/análisis , Monitoreo del Ambiente/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Modelos Teóricos , Estaciones del Año , Utah , Vitelogeninas/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Calidad del Agua
16.
Chem Res Toxicol ; 32(3): 421-436, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30547568

RESUMEN

Here we report a vertically integrated in vitro - in silico study that aims to elucidate the molecular initiating events involved in the induction of oxidative stress (OS) by seven diverse chemicals (cumene hydroperoxide, t-butyl hydroperoxide, hydroquinone, t-butyl hydroquinone, bisphenol A, Dinoseb, and perfluorooctanoic acid). To that end, we probe the relationship between chemical properties, cell viability, glutathione (GSH) depletion, and antioxidant gene expression. Concentration-dependent effects on cell viability were assessed by MTT assay in two Hepa-1 derived mouse liver cell lines: a control plasmid vector transfected cell line (Hepa-V), and a cell line with increased glutamate-cysteine ligase (GCL) activity and GSH content (CR17). Changes to intracellular GSH content and mRNA expression levels for the Nrf2-driven antioxidant genes Gclc, Gclm, heme oxygenase-1 ( Hmox1), and NADPH quinone oxidoreductase-1 ( Nqo1) were monitored after sublethal exposure to the chemicals. In silico models of covalent and redox reactivity were used to rationalize differences in activity of quinones and peroxides. Our findings show CR17 cells were generally more resistant to chemical toxicity and showed markedly attenuated induction of OS biomarkers; however, differences in viability effects between the two cell lines were not the same for all chemicals. The results highlight the vital role of GSH in protecting against oxidative stress-inducing chemicals as well as the importance of probing molecular initiating events in order to identify chemicals with lower potential to cause oxidative stress.


Asunto(s)
Antioxidantes/metabolismo , Expresión Génica/efectos de los fármacos , Glutatión/biosíntesis , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , 2,4-Dinitrofenol/análogos & derivados , 2,4-Dinitrofenol/química , 2,4-Dinitrofenol/farmacología , Animales , Derivados del Benceno/química , Derivados del Benceno/farmacología , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Caprilatos/química , Caprilatos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fluorocarburos/química , Fluorocarburos/farmacología , Hidroquinonas/química , Hidroquinonas/farmacología , Cinética , Ratones , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Fenoles/química , Fenoles/farmacología , terc-Butilhidroperóxido/química , terc-Butilhidroperóxido/farmacología
17.
Environ Sci Technol ; 53(10): 6035-6043, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31034220

RESUMEN

Pharmaceutical contamination is an increasing problem globally. In this regard, the selective serotonin reuptake inhibitors (SSRIs)-a group of antidepressants-are particularly concerning. By disrupting the serotonergic system, SSRIs have the potential to affect ecologically important behaviors in exposed wildlife. Despite this, the nature and magnitude of behavioral perturbations resulting from environmentally relevant SSRI exposure among species is poorly understood. Accordingly, we investigated the effects of two field-realistic levels of the SSRI fluoxetine (61 and 352 ng/L) on sociability and anxiety-related behaviors in eastern mosquitofish ( Gambusia holbrooki) for 28 days. Additionally, we measured whole-body tissue concentrations of fluoxetine and norfluoxetine. We found that fluoxetine altered anxiety-related behavior but not sociability. Specifically, female fish showed reduced anxiety-related behavior at the lower treatment level, while males showed an increase at the higher treatment level. In addition, we report a biomass-dependent and sex-specific accumulation of fluoxetine and norfluoxetine, with smaller fish showing higher relative tissue concentrations, with this relationship being more pronounced in males. Our study provides evidence for nonmonotonic and sex-specific effects of fluoxetine exposure at field-realistic concentrations. More broadly, our study demonstrated that neuroactive pharmaceuticals, such as fluoxetine, can affect aquatic life by causing subtle but important shifts in ecologically relevant behaviors.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Antidepresivos , Ansiedad , Conducta Animal , Femenino , Fluoxetina , Masculino , Inhibidores Selectivos de la Recaptación de Serotonina
18.
J Environ Health ; 81(10): 24-33, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31911703

RESUMEN

Environmental health (EH) professionals provide critical services and respond to complex and multifaceted public health threats. The role of these professionals is continually re-emphasized by emergencies requiring rapid and effective responses to address environmental issues and ensure protection of the public's health. Given the prominence of the EH profession within the public health framework, assessing the governmental health department workforce, practice, and current and future challenges is crucial to ensure EH professionals are fully equipped and prepared to protect the nation's health. Such an understanding of the EH profession is lacking; therefore, we initiated Understanding the Needs, Challenges, Opportunities, Vision, and Emerging Roles in Environmental Health (UNCOVER EH). Through a web-based survey, we identified EH professional demographics, characteristics, education, practice areas, and aspects of leadership and satisfaction. We distributed the survey to a convenience sample of EH professionals working in health departments, limiting the generalizability of results to the entire EH workforce. The results were strengthened, however, by purposive sampling strategies to represent varied professional and workforce characteristics in the respondent universe. The UNCOVER EH initiative provides a primary source of data to inform EH workforce development initiatives, improve the practice, and establish uniform benchmarks and professional competencies.

19.
Proc Biol Sci ; 285(1885)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135169

RESUMEN

Chemical contaminants (e.g. metals, pesticides, pharmaceuticals) are changing ecosystems via effects on wildlife. Indeed, recent work explicitly performed under environmentally realistic conditions reveals that chemical contaminants can have both direct and indirect effects at multiple levels of organization by influencing animal behaviour. Altered behaviour reflects multiple physiological changes and links individual- to population-level processes, thereby representing a sensitive tool for holistically assessing impacts of environmentally relevant contaminant concentrations. Here, we show that even if direct effects of contaminants on behavioural responses are reasonably well documented, there are significant knowledge gaps in understanding both the plasticity (i.e. individual variation) and evolution of contaminant-induced behavioural changes. We explore implications of multi-level processes by developing a conceptual framework that integrates direct and indirect effects on behaviour under environmentally realistic contexts. Our framework illustrates how sublethal behavioural effects of contaminants can be both negative and positive, varying dynamically within the same individuals and populations. This is because linkages within communities will act indirectly to alter and even magnify contaminant-induced effects. Given the increasing pressure on wildlife and ecosystems from chemical pollution, we argue there is a need to incorporate existing knowledge in ecology and evolution to improve ecological hazard and risk assessments.


Asunto(s)
Animales Salvajes/fisiología , Conducta Animal/efectos de los fármacos , Evolución Biológica , Ecosistema , Exposición a Riesgos Ambientales , Contaminantes Ambientales/efectos adversos , Rasgos de la Historia de Vida , Animales , Metales/efectos adversos , Plaguicidas/efectos adversos , Preparaciones Farmacéuticas
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA