Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 94(1): 106-122, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36935347

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and hippocampal neural circuit remodeling that results in spontaneous seizures and cognitive dysfunction. Targeting these cascades may provide disease-modifying treatments for TLE patients. Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) inhibitors have emerged as potential disease-modifying therapies; a more detailed understanding of JAK/STAT participation in epileptogenic responses is required, however, to increase the therapeutic efficacy and reduce adverse effects associated with global inhibition. METHODS: We developed a mouse line in which tamoxifen treatment conditionally abolishes STAT3 signaling from forebrain excitatory neurons (nSTAT3KO). Seizure frequency (continuous in vivo electroencephalography) and memory (contextual fear conditioning and motor learning) were analyzed in wild-type and nSTAT3KO mice after intrahippocampal kainate (IHKA) injection as a model of TLE. Hippocampal RNA was obtained 24 h after IHKA and subjected to deep sequencing. RESULTS: Selective STAT3 knock-out in excitatory neurons reduced seizure progression and hippocampal memory deficits without reducing the extent of cell death or mossy fiber sprouting induced by IHKA injection. Gene expression was rescued in major networks associated with response to brain injury, neuronal plasticity, and learning and memory. We also provide the first evidence that neuronal STAT3 may directly influence brain inflammation. INTERPRETATION: Inhibiting neuronal STAT3 signaling improved outcomes in an animal model of TLE, prevented progression of seizures and cognitive co-morbidities while rescuing pathogenic changes in gene expression of major networks associated with epileptogenesis. Specifically targeting neuronal STAT3 may be an effective disease-modifying strategy for TLE. ANN NEUROL 2023;94:106-122.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Ratones , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Redes Reguladoras de Genes , Ratones Noqueados , Convulsiones , Hipocampo/patología , Neuronas/metabolismo , Cognición , Modelos Animales de Enfermedad
2.
BMC Genomics ; 20(1): 677, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31455240

RESUMEN

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is a major signaling molecule that the brain uses to control a vast network of intracellular cascades fundamental to properties of learning and memory, and cognition. While much is known about BDNF signaling in the healthy nervous system where it controls the mitogen activated protein kinase (MAPK) and cyclic-AMP pathways, less is known about its role in multiple brain disorders where it contributes to the dysregulated neuroplasticity seen in epilepsy and traumatic brain injury (TBI). We previously found that neurons respond to prolonged BDNF exposure (both in vivo (in models of epilepsy and TBI) and in vitro (in BDNF treated primary neuronal cultures)) by activating the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway. This pathway is best known for its association with inflammatory cytokines in non-neuronal cells. RESULTS: Here, using deep RNA-sequencing of neurons exposed to BDNF in the presence and absence of well characterized JAK/STAT inhibitors, and without non-neuronal cells, we determine the BDNF transcriptome that is specifically regulated by agents that inhibit JAK/STAT signaling. Surprisingly, the BDNF-induced JAK/STAT transcriptome contains ion channels and neurotransmitter receptors coming from all the major classes expressed in the brain, along with key modulators of synaptic plasticity, neurogenesis, and axonal remodeling. Analysis of this dataset has revealed a unique non-canonical mechanism of JAK/STATs in neurons as differential gene expression mediated by STAT3 is not solely dependent upon phosphorylation at residue 705 and may involve a BDNF-induced interaction of STAT3 with Heterochromatin Protein 1 alpha (HP1α). CONCLUSIONS: These findings suggest that the neuronal BDNF-induced JAK/STAT pathway involves more than STAT3 phosphorylation at 705, providing the first evidence for a non-canonical mechanism that may involve HP1α. Our analysis reveals that JAK/STAT signaling regulates many of the genes associated with epilepsy syndromes where BDNF levels are markedly elevated. Uncovering the mechanism of this novel form of BDNF signaling in the brain may provide a new direction for epilepsy therapeutics and open a window into the complex mechanisms of STAT3 transcriptional regulation in neurological disease.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Encéfalo/metabolismo , Quinasas Janus/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Encéfalo/enzimología , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , RNA-Seq , Ratas , Ratas Sprague-Dawley , Receptores de Neurotransmisores/biosíntesis , Receptores de Neurotransmisores/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal , Transcriptoma
3.
Epilepsia ; 59(1): 37-66, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247482

RESUMEN

The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.


Asunto(s)
Lesiones Encefálicas/complicaciones , Modelos Animales de Enfermedad , Epilepsia/etiología , Investigación Biomédica Traslacional , Animales , Lesiones Encefálicas/clasificación , Humanos
4.
Epilepsia ; 58(3): 331-342, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28035782

RESUMEN

Neurologic and psychiatric comorbidities are common in patients with epilepsy. Diagnostic, predictive, and pharmacodynamic biomarkers of such comorbidities do not exist. They may share pathogenetic mechanisms with epileptogenesis/ictogenesis, and as such are an unmet clinical need. The objectives of the subgroup on biomarkers of comorbidities at the XIII Workshop on the Neurobiology of Epilepsy (WONOEP) were to present the state-of-the-art recent research findings in the field that highlighting potential biomarkers for comorbidities in epilepsy. We review recent progress in the field, including molecular, imaging, and genetic biomarkers of comorbidities as discussed during the WONOEP meeting on August 31-September 4, 2015, in Heybeliada Island (Istanbul, Turkey). We further highlight new directions and concepts from studies on comorbidities and potential new biomarkers for the prediction, diagnosis, and treatment of epilepsy-associated comorbidities. The activation of various molecular signaling pathways such as the "Janus Kinase/Signal Transducer and Activator of Transcription," "mammalian Target of Rapamycin," and oxidative stress have been shown to correlate with the presence and severity of subsequent cognitive abnormalities. Furthermore, dysfunction in serotonergic transmission, hyperactivity of the hypothalamic-pituitary-adrenocortical axis, the role of the inflammatory cytokines, and the contributions of genetic factors have all recently been regarded as relevant for understanding epilepsy-associated depression and cognitive deficits. Recent evidence supports the utility of imaging studies as potential biomarkers. The role of such biomarker may be far beyond the diagnosis of comorbidities, as accumulating clinical data indicate that comorbidities can predict epilepsy outcomes. Future research is required to reveal whether molecular changes in specific signaling pathways or advanced imaging techniques could be detected in the clinical settings and correlate with epilepsy-associated comorbidities. A reliable biomarker will allow a more accurate diagnosis and improved treatment of epilepsy-associated comorbidities.


Asunto(s)
Biomarcadores , Epilepsia/epidemiología , Trastornos Mentales/epidemiología , Enfermedades del Sistema Nervioso/epidemiología , Animales , Comorbilidad , Humanos , Neurobiología
5.
Epilepsia ; 55(11): 1826-33, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25223733

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is frequently medically intractable and often progressive. Compromised inhibitory neurotransmission due to altered γ-aminobutyric acid (GABA)A receptor α4 subunit (GABAA Rα4) expression has been emphasized as a potential contributor to the initial development of epilepsy following a brain insult (primary epileptogenesis), but the regulation of GABAA Rα4 during chronic epilepsy, specifically, how expression is altered following spontaneous seizures, is less well understood. METHODS: Continuous video-electroencephalography (EEG) recordings from rats with pilocarpine-induced TLE were used to capture epileptic animals within 3 h of a spontaneous seizure (SS), or >24 h after the last SS, to determine whether recent occurrence of a seizure was associated with altered levels of GABAA Rα4 expression. We further evaluated whether this GABAA Rα4 plasticity is regulated by signaling mechanisms active in primary epileptogenesis, specifically, increases in brain-derived neurotrophic factor (BDNF) and early growth response factor 3 (Egr3). RESULTS: Elevated levels of GABAA Rα4 messenger RNA (mRNA) and protein were observed following spontaneous seizures, and were associated with higher levels of BDNF and Egr3 mRNA. SIGNIFICANCE: These data suggest that spontaneous, recurrent seizures that define chronic epilepsy may influence changes in GABAA Rα4 expression, and that signaling pathways known to regulate GABAA Rα4 expression after status epilepticus may also be activated after spontaneous seizures in chronically epileptic animals.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Receptores de GABA-A/metabolismo , Convulsiones/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Pilocarpina/farmacología , Ratas Sprague-Dawley , Convulsiones/inducido químicamente
6.
Adv Exp Med Biol ; 813: 133-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25012373

RESUMEN

Numerous changes in GABAergic neurons, receptors, and inhibitory mechanisms have been described in temporal lobe epilepsy (TLE), either in humans or in animal models. Nevertheless, there remains a common assumption that epilepsy can be explained by simply an insufficiency of GABAergic inhibition. Alternatively, investigators have suggested that there is hyperinhibition that masks an underlying hyperexcitability. Here we examine the status epilepticus (SE) models of TLE and focus on the dentate gyrus of the hippocampus, where a great deal of data have been collected. The types of GABAergic neurons and GABAA receptors are summarized under normal conditions and after SE. The role of GABA in development and in adult neurogenesis is discussed. We suggest that instead of "too little or too much" GABA there is a complexity of changes after SE that makes the emergence of chronic seizures (epileptogenesis) difficult to understand mechanistically, and difficult to treat. We also suggest that this complexity arises, at least in part, because of the remarkable plasticity of GABAergic neurons and GABAA receptors in response to insult or injury.


Asunto(s)
Epilepsia/fisiopatología , Plasticidad Neuronal , Ácido gamma-Aminobutírico/fisiología , Adulto , Humanos
7.
Neoreviews ; 25(6): e338-e349, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38821905

RESUMEN

Neonatal seizures are common among patients with acute brain injury or critical illness and can be difficult to diagnose and treat. The most common etiology of neonatal seizures is hypoxic-ischemic encephalopathy, with other common causes including ischemic stroke and intracranial hemorrhage. Neonatal clinicians can use a standardized approach to patients with suspected or confirmed neonatal seizures that entails laboratory testing, neuromonitoring, and brain imaging. The primary goals of management of neonatal seizures are to identify the underlying cause, correct it if possible, and prevent further brain injury. This article reviews recent evidence-based guidelines for the treatment of neonatal seizures and discusses the long-term outcomes of patients with neonatal seizures.


Asunto(s)
Convulsiones , Humanos , Recién Nacido , Convulsiones/diagnóstico , Convulsiones/etiología , Convulsiones/terapia , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/terapia
8.
Epilepsia ; 54 Suppl 4: 35-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909852

RESUMEN

Several preclinical proof-of-concept studies have provided evidence for positive treatment effects on epileptogenesis. However, none of these hypothetical treatments has advanced to the clinic. The experience in other fields of neurology such as stroke, Alzheimer's disease, or amyotrophic lateral sclerosis has indicated several problems in the design of preclinical studies, which likely contribute to failures in translating the positive preclinical data to the clinic. The Working Group on "Issues related to development of antiepileptogenic therapies" of the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES) has considered the possible problems that arise when moving from proof-of-concept antiepileptogenesis (AEG) studies to preclinical AEG trials, and eventually to clinical AEG trials. This article summarizes the discussions and provides recommendations on how to design a preclinical AEG monotherapy trial in adult animals. We specifically address study design, animal and model selection, number of studies needed, issues related to administration of the treatment, outcome measures, statistics, and reporting. In addition, we give recommendations for future actions to advance the preclinical AEG testing.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Drogas en Investigación/uso terapéutico , Adulto , Animales , Anticonvulsivantes/efectos adversos , Niño , Enfermedad Crónica , Ensayos Clínicos Controlados como Asunto , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Aprobación de Drogas , Resistencia a Medicamentos , Drogas en Investigación/efectos adversos , Medicina Basada en la Evidencia , Humanos , National Institute of Neurological Disorders and Stroke (U.S.) , Estados Unidos
9.
Epilepsia ; 54 Suppl 4: 44-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909853

RESUMEN

Many symptoms of neurologic or psychiatric illness--such as cognitive impairment, depression, anxiety, attention deficits, and migraine--occur more frequently in people with epilepsy than in the general population. These diverse comorbidities present an underappreciated problem for people with epilepsy and their caregivers because they decrease quality of life, complicate treatment, and increase mortality. In fact, it has been suggested that comorbidities can have a greater effect on quality of life in people with epilepsy than the seizures themselves. There is increasing recognition of the frequency and impact of cognitive and behavioral comorbidities of epilepsy, highlighted in the 2012 Institute of Medicine report on epilepsy. Comorbidities have also been acknowledged, as a National Institutes of Health (NIH) Benchmark area for research in epilepsy. However, relatively little progress has been made in developing new therapies directed specifically at comorbidities. On the other hand, there have been many advances in understanding underlying mechanisms. These advances have made it possible to identify novel targets for therapy and prevention. As part of the International League Against Epilepsy/American Epilepsy Society workshop on preclinical therapy development for epilepsy, our working group considered the current state of understanding related to terminology, models, and strategies for therapy development for the comorbidities of epilepsy. Herein we summarize our findings and suggest ways to accelerate development of new therapies. We also consider important issues to improve research including those related to methodology, nonpharmacologic therapies, biomarkers, and infrastructure.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Descubrimiento de Drogas , Drogas en Investigación/uso terapéutico , Epilepsia/tratamiento farmacológico , Trastornos Neurocognitivos/tratamiento farmacológico , Animales , Trastornos de Ansiedad/inducido químicamente , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/psicología , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/psicología , Comorbilidad , Trastorno Depresivo/inducido químicamente , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/psicología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Drogas en Investigación/efectos adversos , Epilepsia/diagnóstico , Epilepsia/psicología , Humanos , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/psicología , Trastornos Neurocognitivos/inducido químicamente , Trastornos Neurocognitivos/diagnóstico , Trastornos Neurocognitivos/psicología , Calidad de Vida/psicología , Investigación Biomédica Traslacional
10.
J Neurochem ; 120(2): 210-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22035109

RESUMEN

Regulation of gene expression via brain-derived neurotrophic factor (BDNF) is critical to the development of the nervous system and may well underlie cognitive performance throughout life. We now describe a mechanism by which BDNF can exert its effects on postsynaptic receptor populations that may have relevance to both the normal and diseased brain where BDNF levels either rise or fall in association with changes in excitatory neurotransmission. Increased levels of NMDA receptors (NMDARs) occur in rat cortical neurons via synthesis of new NMDA receptor 1 (NR1) subunits. The majority of synthesis is controlled by binding of cAMP response element binding protein (CREB) and early growth response factor 3 (Egr3) to the core NR1 promoter (NR1-p) region. BDNF-mediated NR1 transcription depends upon induction of the mitogen-activated protein kinase (MAPK) pathway through activation of the TrK-B receptor. Taken together with the fact that NMDAR activation stimulates BDNF synthesis, our results uncover a feed-forward gene regulatory network that may enhance excitatory neurotransmission to change neuronal behavior over time.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteína de Unión a CREB/metabolismo , Corteza Cerebral/citología , Canales de Potasio Éter-A-Go-Go/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Canales de Potasio Éter-A-Go-Go/genética , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas Luminiscentes/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Receptor trkB/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Transfección , Dedos de Zinc/genética
11.
Epilepsia ; 53 Suppl 9: 71-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23216580

RESUMEN

Epilepsy is a disease of complex etiology, and multiple molecular mechanisms contribute to its development. Temporal lobe epilepsy (TLE) may result from an initial precipitating event such as hypoxia, head injury, or prolonged seizure (i.e., status epilepticus [SE]), that is followed by a latent period of months to years before spontaneous seizures occur. γ-Aminobutyric acid (GABA)(A) receptor (GABA(A) R) subunit changes occur during this latent period and may persist following the onset of spontaneous seizures. Research into the molecular mechanisms regulating these changes and potential targets for intervention to reverse GABA(A) R subunit alterations have uncovered seizure-induced pathways that contribute to epileptogenesis. Several growth or transcription factors are known to be activated by SE, including (but not limited to): brain-derived neurotrophic factor (BDNF), cAMP response element binding protein (CREB), inducible cAMP early repressor (ICER), and early growth response factors (Egrs). Results of multiple studies suggest that these factors transcriptionally regulate GABA(A) R subunit gene expression in a way that is pertinent to the development of epilepsy. This article focuses on these signaling elements and describes their possible roles in gene regulatory pathways that may be critical in the development of chronic epilepsy.


Asunto(s)
Epilepsia/metabolismo , Redes y Vías Metabólicas , Receptores de GABA-A/biosíntesis , Transducción de Señal , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Epilepsia/fisiopatología , Epilepsia del Lóbulo Temporal/metabolismo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Factores de Crecimiento Nervioso/metabolismo , Neurotransmisores/metabolismo , Receptores de GABA-A/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Neurobiol Dis ; 39(3): 439-48, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20493259

RESUMEN

The perineuronal net (PN), a component of the neural extracellular matrix (ECM), is a dynamic structure whose expression decreases following diminished physiological activity. Here, we analyzed the effects of increased neuronal activity on the development of aggrecan, a component of the PN, in the hippocampus. We show aggrecan expression to be prominent around parvalbumin (PV) interneurons in the postnatal hippocampus. Moreover, after seizure induction in early life there was a significant increase in aggrecan expression in a region specific manner during the course of development. We conclude that increased neuronal activity leads to accelerated expression of PNs in the hippocampus that attenuates in the adult hippocampus. This study shows the dynamic nature of the PN component of the ECM and the role neuronal activity has in molding the extracellular milieu of inhibitory interneurons.


Asunto(s)
Agrecanos/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Convulsiones/metabolismo , Análisis de Varianza , Animales , Recuento de Células , Hipocampo/fisiopatología , Inmunohistoquímica , Ácido Kaínico , Masculino , Parvalbúminas/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
13.
Ann Neurol ; 65(3): 326-36, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19334075

RESUMEN

OBJECTIVE: Neonatal seizures occur frequently, are often refractory to anticonvulsants, and are associated with considerable morbidity and mortality. Genetic and electrophysiological evidence indicates that KCNQ voltage-gated potassium channels are critical regulators of neonatal brain excitability. This study tests the hypothesis that selective openers of KCNQ channels may be effective for treatment of neonatal seizures. METHODS: We induced seizures in postnatal day 10 rats with either kainic acid or flurothyl. We measured seizure activity using quantified behavioral rating and electrocorticography. We compared the efficacy of flupirtine, a selective KCNQ channel opener, with phenobarbital and diazepam, two drugs in current use for neonatal seizures. RESULTS: Unlike phenobarbital or diazepam, flupirtine prevented animals from experiencing development of status epilepticus when administered before kainate. In the flurothyl model, phenobarbital and diazepam increased latency to seizure onset, but flupirtine completely prevented seizures throughout the experiment. Flupirtine was also effective in arresting electrographic and behavioral seizures when administered after animals had developed continuous kainate-induced status epilepticus. Flupirtine caused dose-related sedation and suppressed electroencephalographic activity but did not result in respiratory suppression or result in any mortality. INTERPRETATION: Flupirtine appears more effective than either of two commonly used antiepileptic drugs, phenobarbital and diazepam, in preventing and suppressing seizures in both the kainic acid and flurothyl models of symptomatic neonatal seizures. KCNQ channel openers merit further study as potential treatments for seizures in infants and children.


Asunto(s)
Aminopiridinas/uso terapéutico , Anticonvulsivantes/uso terapéutico , Canales de Potasio KCNQ/agonistas , Convulsiones/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológico , Animales , Animales Recién Nacidos , Diazepam/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electroencefalografía , Femenino , Flurotilo , Canales de Potasio KCNQ/fisiología , Ácido Kaínico , Masculino , Fenobarbital/uso terapéutico , Embarazo , Ratas , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Análisis Espectral , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología , Factores de Tiempo
14.
Neuropharmacology ; 167: 107702, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31301334

RESUMEN

The epilepsies are a complex group of disorders that can be caused by a myriad of genetic and acquired factors. As such, identifying interventions that will prevent development of epilepsy, as well as cure the disorder once established, will require a multifaceted approach. Here we discuss the progress in scientific discovery propelling us towards this goal, including identification of genetic risk factors and big data approaches that integrate clinical and molecular 'omics' datasets to identify common pathophysiological signatures and biomarkers. We discuss the many animal and cellular models of epilepsy, what they have taught us about pathophysiology, and the cutting edge cellular, optogenetic, chemogenetic and anti-seizure drug screening approaches that are being used to find new cures in these models. Finally, we reflect on the work that still needs to be done towards identify at-risk individuals early, targeting and stopping epileptogenesis, and optimizing promising treatment approaches. Ultimately, developing and implementing cures for epilepsy will require a coordinated and immense effort from clinicians and basic scientists, as well as industry, and should always be guided by the needs of individuals affected by epilepsy and their families. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Descubrimiento de Drogas/métodos , Epilepsia/terapia , Terapia Genética/métodos , Animales , Anticonvulsivantes/farmacología , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Descubrimiento de Drogas/tendencias , Evaluación Preclínica de Medicamentos/métodos , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Epilepsia/diagnóstico , Epilepsia/genética , Terapia Genética/tendencias , Humanos
16.
Front Mol Neurosci ; 11: 285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186109

RESUMEN

While the exact role of ß1 subunit-containing GABA-A receptors (GABARs) in brain function is not well understood, altered expression of the ß1 subunit gene (GABRB1) is associated with neurological and neuropsychiatric disorders. In particular, down-regulation of ß1 subunit levels is observed in brains of patients with epilepsy, autism, bipolar disorder and schizophrenia. A pathophysiological feature of these disease states is imbalance in energy metabolism and mitochondrial dysfunction. The transcription factor, nuclear respiratory factor 1 (NRF-1), has been shown to be a key mediator of genes involved in oxidative phosphorylation and mitochondrial biogenesis. Using a variety of molecular approaches (including mobility shift, promoter/reporter assays, and overexpression of dominant negative NRF-1), we now report that NRF-1 regulates transcription of GABRB1 and that its core promoter contains a conserved canonical NRF-1 element responsible for sequence specific binding and transcriptional activation. Our identification of GABRB1 as a new target for NRF-1 in neurons suggests that genes coding for inhibitory neurotransmission may be coupled to cellular metabolism. This is especially meaningful as binding of NRF-1 to its element is sensitive to the kind of epigenetic changes that occur in multiple disorders associated with altered brain inhibition.

17.
J Neurosci ; 26(44): 11342-6, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079662

RESUMEN

Differential expression of GABA(A) receptor (GABR) subunits has been demonstrated in hippocampus from patients and animals with temporal lobe epilepsy (TLE), but whether these changes are important for epileptogenesis remains unknown. Previous studies in the adult rat pilocarpine model of TLE found reduced expression of GABR alpha1 subunits and increased expression of alpha4 subunits in dentate gyrus (DG) of epileptic rats compared with controls. To investigate whether this altered subunit expression is a critical determinant of spontaneous seizure development, we used adeno-associated virus type 2 containing the alpha4 subunit gene (GABRA4) promoter to drive transgene expression in DG after status epilepticus (SE). This novel use of a condition-dependent promoter upregulated after SE successfully increased expression of GABR alpha1 subunit mRNA and protein in DG at 1-2 weeks after SE. Enhanced alpha1 expression in DG resulted in a threefold increase in mean seizure-free time after SE and a 60% decrease in the number of rats developing epilepsy (recurrent spontaneous seizures) in the first 4 weeks after SE. These findings provide the first direct evidence that altering GABR subunit expression can affect the development of epilepsy and suggest that alpha1 subunit levels are important determinants of inhibitory function in hippocampus.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/prevención & control , Giro Parahipocampal/metabolismo , Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo , Animales , Epilepsia del Lóbulo Temporal/genética , Vectores Genéticos/genética , Humanos , Masculino , Inhibición Neural/fisiología , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/genética
18.
Psychopharmacology (Berl) ; 186(3): 343-50, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16491430

RESUMEN

RATIONALE: The progesterone metabolite 5alpha-pregnane-3alpha-ol-20-one (3alpha,5alpha-THP) is an important modulator of the hypothalamic-pituitary-adrenal axis and stress-induced corticosterone response. Typically, 3alpha,5alpha-THP levels are increased in response to acute stress, which may then reduce corticosterone release from the adrenals. Early postnatal stimulation is a developmental stressor that can produce pervasive endocrine effects. OBJECTIVES: The present studies investigated the effects of early postnatal stimulation on plasma progestin and corticosterone levels and hippocampal progestin levels of rats. METHODS: On postnatal days 9 and 10, rats were either left in their home cage undisturbed or injected intraperitoneally as a means of early stimulation (ES). Tissues were collected on either postnatal day 10 (6 h after last handling experience) or adulthood. Plasma corticosterone, progesterone, and 3alpha,5alpha-THP and hippocampal progesterone and 3alpha,5alpha-THP were measured by radioimmunoassay. RESULTS: On postnatal day 10, plasma, but not hippocampal, levels of progesterone and 3alpha,5alpha-THP were significantly lower among rats exposed to ES than control rats. These effects occurred concomitant with a tendency for plasma corticosterone to be higher among ES compared to control rats. In adulthood, hippocampal 3alpha,5alpha-THP was significantly lower among ES vs control rats. CONCLUSIONS: Together, these data suggest that ES may influence immediate secretion of 3alpha,5alpha-THP and corticosterone and have pervasive effects in adulthood on the biosynthesis and/or metabolism of progestins in the hippocampus.


Asunto(s)
Animales Recién Nacidos/fisiología , Hipocampo/metabolismo , Estimulación Física , Animales , Corticosterona/sangre , Corticosterona/metabolismo , Masculino , Pregnanolona/sangre , Pregnanolona/metabolismo , Progesterona/sangre , Progesterona/metabolismo , Ratas , Ratas Sprague-Dawley
19.
eNeuro ; 3(1)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27057559

RESUMEN

Brain-derived neurotrophic factor (BDNF) levels are elevated after status epilepticus (SE), leading to activation of multiple signaling pathways, including the janus kinase/signal transducer and activator of transcription pathway that mediates a decrease in GABAA receptor α1 subunits in the hippocampus (Lund et al., 2008). While BDNF can signal via its pro or mature form, the relative contribution of these forms to signaling after SE is not fully known. In the current study, we investigate changes in proBDNF levels acutely after SE in C57BL/6J mice. In contrast to previous reports (Unsain et al., 2008; Volosin et al., 2008; VonDran et al., 2014), our studies found that levels of proBDNF in the hippocampus are markedly elevated as early as 3 h after SE onset and remain elevated for 7 d. Immunohistochemistry studies indicate that seizure-induced BDNF localizes to all hippocampal subfields, predominantly in principal neurons and also in astrocytes. Analysis of the proteolytic machinery that cleaves proBDNF to produce mature BDNF demonstrates that acutely after SE there is a decrease in tissue plasminogen activator and an increase in plasminogen activator inhibitor-1 (PAI-1), an inhibitor of extracellular and intracellular cleavage, which normalizes over the first week after SE. In vitro treatment of hippocampal slices from animals 24 h after SE with a PAI-1 inhibitor reduces proBDNF levels. These findings suggest that rapid proBDNF increases following SE are due in part to reduced cleavage, and that proBDNF may be part of the initial neurotrophin response driving intracellular signaling during the acute phase of epileptogenesis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Estado Epiléptico/metabolismo , Animales , Astrocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Pilocarpina , Estado Epiléptico/inducido químicamente
20.
Exp Neurol ; 271: 445-56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26172316

RESUMEN

Synaptic inhibition in the adult brain is primarily mediated by the γ-aminobutyric acid (GABA) type A receptor (GABA(A)R). The distribution, properties, and dynamics of these receptors are largely determined by their subunit composition. Alteration of subunit composition after a traumatic brain injury (TBI) may result in abnormal increased synaptic firing and possibly contribute to injury-related pathology. Several studies have shown that the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway can alter GABA(A)R subunit expression. The present study investigated changes in JAK/STAT pathway activation after two different severities of experimental TBI in the mouse using the controlled cortical impact (CCI) model. It also investigated whether modulating the activation of the JAK/STAT pathway after severe controlled cortical impact (CCI-S) with a JAK/STAT inhibitor (WP1066) alters post-traumatic epilepsy development and/or neurological recovery after injury. Our results demonstrated differential changes in both the activation of STAT3 and the expression of the GABA(A)R α1 and γ2 subunit levels that were dependent on the severity of the injury. The change in the GABA(A)R α1 subunit levels appeared to be at least partly transcriptionally mediated. We were able to selectively reverse the decrease in GABA(A)R α1 protein levels with WP1066 treatment after CCI injury. WP1066 treatment also improved the degree of recovery of vestibular motor function after injury. These findings suggest that the magnitude of JAK/STAT pathway activation and GABA(A)R α1 subunit level decrease is dependent on injury severity in this mouse model of TBI. In addition, reducing JAK/STAT pathway activation after severe experimental TBI reverses the decrease in the GABA(A)R α1 protein levels and improves vestibular motor recovery.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Quinasas Janus/metabolismo , Receptores de GABA-A/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Conducta Exploratoria , Regulación de la Expresión Génica/fisiología , Quinasas Janus/genética , Masculino , Ratones , Actividad Motora/fisiología , ARN Mensajero/metabolismo , Receptores de GABA-A/genética , Reconocimiento en Psicología , Factores de Transcripción STAT/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA