Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37823458

RESUMEN

Site-selective probing of iodine 4d orbitals at 13.1 nm was used to characterize the photolysis of CH2I2 and CH2BrI initiated at 202.5 nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2I2, the structural evolution of the neutral molecule was simultaneously characterized along the C-I and I-C-I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom.

2.
Phys Chem Chem Phys ; 21(26): 14173-14185, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30444242

RESUMEN

Spin-orbit changing transitions for bond-axis oriented collisions of NO(X) with Ar have been investigated with full quantum state selection via a crossed molecular beam experiment at collision energies of 532 cm-1 and 651 cm-1. NO(X) molecules were selected in their ground rotational state (Ω = 0.5, j = 0.5, f) before being adiabatically oriented using a static electric field, such that either the N- or O-end of the molecule was directed towards the incoming Ar atom. After collision, NO(X, Ω' = 1.5, j', e) molecules were probed quantum state specifically using velocity-map ion imaging, coupled with resonantly enhanced multi-photon ionization. Differences were observed between the experimental ion images and differential cross sections for collisions occurring at the two ends of the molecule, with results that could largely be accounted for by quantum mechanical scattering calculations. The bond-axis oriented data for the spin-orbit changing collisions are compared with similar results obtained previously for spin-orbit conserving transitions, and for field free scattering of NO(X) with Ar.

3.
J Chem Phys ; 149(18): 184301, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30441911

RESUMEN

New multi-reference, global ab initio potential energy surfaces (PESs) are reported for the interaction of Xe atoms with OH radicals in their ground X2Π and excited A2Σ+ states, together with the non-adiabatic couplings between them. The 2A' excited potential features a very deep well at the collinear Xe-OH configuration whose minimum corresponds to the avoided crossing with the 1A' PES. It is therefore expected that, as with collisions of Kr + OH(A), electronic quenching will play a major role in the dynamics, competing favorably with rotational energy transfer within the 2A' state. The surfaces and couplings are used in full three-state surface-hopping trajectory calculations, including roto-electronic couplings, to calculate integral cross sections for electronic quenching and collisional removal. Experimental cross sections, measured using Zeeman quantum beat spectroscopy, are also presented here for comparison with these calculations. Unlike similar previous work on the collisions of OH(A) with Kr, the surface-hopping calculations are only able to account qualitatively for the experimentally observed electronic quenching cross sections, with those calculated being around a factor of two smaller than the experimental ones. However, the predicted total depopulation of the initial rovibrational state of OH(A) (quenching plus rotational energy transfer) agrees well with the experimental results. Possible reasons for the discrepancies are discussed in detail.

4.
J Chem Phys ; 146(20): 204304, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28571381

RESUMEN

The inelastic scattering of NO(X2Π) by O2(X3Σg-) was studied at a mean collision energy of 550 cm-1 using velocity-map ion imaging. The initial quantum state of the NO(X2Π, v = 0, j = 0.5, Ω=0.5, 𝜖 = -1, f) molecule was selected using a hexapole electric field, and specific Λ-doublet levels of scattered NO were probed using (1+1') resonantly enhanced multiphoton ionization. A modified "onion-peeling" algorithm was employed to extract angular scattering information from the series of "pancaked," nested Newton spheres arising as a consequence of the rotational excitation of the molecular oxygen collision partner. The extracted differential cross sections for NO(X) f→f and f→e Λ-doublet resolved, spin-orbit conserving transitions, partially resolved in the oxygen co-product rotational quantum state, are reported, along with O2 fragment pair-correlated rotational state population. The inelastic scattering of NO with O2 is shown to share many similarities with the scattering of NO(X) with the rare gases. However, subtle differences in the angular distributions between the two collision partners are observed.

5.
J Chem Phys ; 146(24): 244313, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28668067

RESUMEN

Zeeman quantum beat spectroscopy has been used to determine the thermal (300 K) rate constants for electronic quenching, rotational energy transfer, and collisional depolarization of OH(A2Σ+) by H2. Cross sections for both the collisional disorientation and collisional disalignment of the angular momentum in the OH(A2Σ+) radical are reported. The experimental results for OH(A2Σ+) + H2 are compared to previous work on the OH(A2Σ+) + He and Ar systems. Further comparisons are also made to the OH(A2Σ+) + Kr system, which has been shown to display significant non-adiabatic dynamics. The OH(A2Σ+) + H2 experimental data reveal that collisions that survive the electronic quenching process are highly depolarizing, reflecting the deep potential energy wells that exist on the excited electronic state surface.

6.
J Chem Phys ; 147(1): 013914, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28688387

RESUMEN

The ultraviolet photochemistry of 2-bromothiophene (C4H3SBr) has been studied across the wavelength range 265-245 nm using a velocity-map imaging (VMI) apparatus recently modified for multi-mass imaging and vacuum ultraviolet (VUV, 118.2 nm) universal ionization. At all wavelengths, molecular products arising from the loss of atomic bromine were found to exhibit recoil velocities and anisotropies consistent with those reported elsewhere for the Br fragment [J. Chem. Phys. 142, 224303 (2015)]. Comparison between the momentum distributions of the Br and C4H3S fragments suggests that bromine is formed primarily in its ground (2P3/2) spin-orbit state. These distributions match well at high momentum, but relatively fewer slow moving molecular fragments were detected. This is explained by the observation of a second substantial ionic product, C3H3+. Analysis of ion images recorded simultaneously for several ion masses and the results of high-level ab initio calculations suggest that this fragment ion arises from dissociative ionization (by the VUV probe laser) of the most internally excited C4H3S fragments. This study provides an excellent benchmark for the recently modified VMI instrumentation and offers a powerful demonstration of the emerging field of multi-mass VMI using event-triggered, high frame-rate sensors, and universal ionization.

7.
J Chem Phys ; 146(1): 014302, 2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-28063434

RESUMEN

The integral steric asymmetry for the inelastic scattering of NO(X) by a variety of collision partners was recorded using a crossed molecular beam apparatus. The initial state of the NO(X, v = 0, j = 1/2, Ω=1/2, ϵ=-1,f) molecule was selected using a hexapole electric field, before the NO bond axis was oriented in a static electric field, allowing probing of the scattering of the collision partner at either the N- or O-end of the molecule. Scattered NO molecules were state selectively probed using (1 + 1') resonantly enhanced multiphoton ionisation, coupled with velocity-map ion imaging. Experimental integral steric asymmetries are presented for NO(X) + Ar, for both spin-orbit manifolds, and Kr, for the spin-orbit conserving manifold. The integral steric asymmetry for spin-orbit conserving and changing transitions of the NO(X) + O2 system is also presented. Close-coupled quantum mechanical scattering calculations employing well-tested ab initio potential energy surfaces were able to reproduce the steric asymmetry observed for the NO-rare gas systems. Quantum mechanical scattering and quasi-classical trajectory calculations were further used to help interpret the integral steric asymmetry for NO + O2. Whilst the main features of the integral steric asymmetry of NO with the rare gases are also observed for the O2 collision partner, some subtle differences provide insight into the form of the underlying potentials for the more complex system.

8.
J Chem Phys ; 144(22): 224301, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27306001

RESUMEN

The effect of orientation of the NO(X) bond axis prior to rotationally inelastic collisions with Ar has been investigated experimentally and theoretically. A modification to conventional velocity-map imaging ion optics is described, which allows the orientation of hexapole state-selected NO(X) using a static electric field, followed by velocity map imaging of the resonantly ionized scattered products. Bond orientation resolved differential cross sections are measured experimentally for a series of spin-orbit conserving transitions and compared with quantum mechanical calculations. The agreement between experimental results and those from quantum mechanical calculations is generally good. Parity pairs, which have previously been observed in collisions of unpolarized NO with various rare gases, are not observed due to the coherent superposition of the two j = 1/2, Ω = 1/2 Λ-doublet levels in the orienting field. The normalized difference differential cross sections are found to depend predominantly on the final rotational state, and are not very sensitive to the final Λ-doublet level. The differential steric effect has also been investigated theoretically, by means of quantum mechanical and classical calculations. Classically, the differential steric effect can be understood by considering the steric requirement for different types of trajectories that contribute to different regions of the differential cross section. However, classical effects cannot account quantitatively for the differential steric asymmetry observed in NO(X) + Ar collisions, which reflects quantum interference from scattering at either end of the molecule. This quantum interference effect is dominated by the repulsive region of the potential.

9.
J Chem Phys ; 145(7): 074303, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27544101

RESUMEN

The fragmentations of iodine cyanide ions created with 2 to 8 positive charges by photoionization from inner shells with binding energies from 59 eV (I 4d) to ca. 900 eV (I 3p) have been examined by multi-electron and multi-ion coincidence spectroscopy with velocity map imaging ion capability. The charge distributions produced by hole formation in each shell are characterised and systematic effects of the number of charges and of initial charge localisation are found.

10.
Phys Chem Chem Phys ; 17(45): 30210-28, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26313735

RESUMEN

The concept of the steric effect in molecular collisions is central to chemistry. In this Perspective article we review some of the progress made in studying the steric effect in inelastic and reactive collisions involving relatively small isolated atomic and molecular species. We overview the theoretical framework used to quantify the steric effect, and outline some of the key experimental approaches that can be employed to study the dynamics and mechanism of collisions involving oriented and aligned molecules. We illustrate the discussion by highlighting a few recent studies of inelastic and reactive scattering. Finally, we conclude with some reflections on possible future directions of interest.

11.
J Phys Chem A ; 119(50): 12404-16, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26413997

RESUMEN

Rotational angular momentum orientation effects in the rotationally inelastic collisions of NO(X) with Ar have been investigated both experimentally and theoretically at a collision energy of 530 cm(-1). The collision-induced orientation has been determined experimentally using a hexapole electric field to select the ϵ = -1 Λ-doublet level of the NO(X) j = 1/2 initial state. Fully quantum state resolved polarization-dependent differential cross sections were recorded experimentally using a crossed molecular beam apparatus coupled with a (1 + 1') resonance-enhanced multiphoton ionization detection scheme and subsequent velocity-map imaging. To determine the NO sense of rotation, the probe radiation was circularly polarized. Experimental orientation polarization-dependent differential cross sections are compared with those obtained from quantum mechanical scattering calculations and are found to be in good agreement. The origin of the collision-induced orientation has been investigated by means of close-coupled quantum mechanical, quantum mechanical hard shell, quasi-classical trajectory (QCT), and classical hard shell calculations at the same collision energy. Although there is evidence for the operation of limiting classical mechanisms, the rotational orientation cannot be accounted for by QCT calculations and is found to be strongly influenced by quantum mechanical effects.

12.
J Chem Phys ; 142(14): 144307, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25877578

RESUMEN

We present a new trajectory surface hopping study of the rotational energy transfer and collisional quenching of electronically excited OH(A) radicals by Kr. The trajectory surface hopping calculations include both electronic coupling between the excited 2(2)A' and ground 1(2)A' electronic states, as well as Renner-Teller and Coriolis roto-electronic couplings between the 1(2)A' and 1(2)A″, and the 2(2)A' and 1(2)A″ electronic states, respectively. The new calculations are shown to lead to a noticeable improvement in the agreement between theory and experiment in this system, particularly with respect to the OH(X) rotational and Λ-doublet quantum state populations, compared with a simpler two-state treatment, which only included the electronic coupling between the 2(2)A' and 1(2)A' states. Discrepancies between the predictions of theory and experiment do however remain, and could arise either due to errors in the potential energy surfaces and couplings employed, or due to the limitations in the classical treatment of non-adiabatic effects.

13.
Rapid Commun Mass Spectrom ; 28(15): 1649-57, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24975244

RESUMEN

RATIONALE: Imaging mass spectrometry is a powerful analytical technique capable of accessing a large volume of spatially resolved, chemical data from two-dimensional samples. Probing the entire surface of a sample simultaneously requires a detector with high spatial and temporal resolutions, and the ability to observe events relating to different mass-to-charge ratios. METHODS: A commercially available time-of-flight mass spectrometer, designed for matrix-assisted laser desorption/ionization (MALDI) analysis, was combined with the novel pixel imaging mass spectrometry (PImMS) camera in order to perform multi-mass, microscope-mode imaging experiments. A number of minor modifications were made to the spectrometer hardware and ion optics so that spatial imaging was achieved for a number of small molecules. RESULTS: It was shown that a peak width of Δm50 % < 1 m/z unit across the range 200 ≤ m/z ≤ 800 can be obtained while also achieving an optimum spatial resolution of 25 µm. It was further shown that these data were obtained simultaneously for all analytes present without the need to scan the experimental parameters. CONCLUSIONS: This work demonstrates the capability of multi-mass, microscope-mode imaging to reduce the acquisition time of spatially distributed analytes such as multi-arrays or biological tissue sections. It also shows that such an instrument can be commissioned by effecting relatively minor modifications to a conventional commercial machine.


Asunto(s)
Cámaras gamma , Aumento de la Imagen/instrumentación , Microscopía/instrumentación , Imagen Molecular/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
J Chem Phys ; 141(16): 164306, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25362298

RESUMEN

Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm(-1) for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system.

15.
J Chem Phys ; 140(5): 054306, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24511939

RESUMEN

Quantum beat spectroscopy has been used to measure rate coefficients at 300 K for collisional depolarization for NO(A (2)Σ(+)) and OH(A (2)Σ(+)) with krypton. Elastic depolarization rate coefficients have also been determined for OH(A) + Kr, and shown to make a much more significant contribution to the total depolarization rate than for NO(A) + Kr. While the experimental data for NO(A) + Kr are in excellent agreement with single surface quasiclassical trajectory (QCT) calculations carried out on the upper 2A(') potential energy surface, the equivalent QCT and quantum mechanical calculations cannot account for the experimental results for OH(A) + Kr collisions, particularly at low N. This disagreement is due to the presence of competing electronic quenching at low N, which requires a multi-surface, non-adiabatic treatment. Somewhat improved agreement with experiment is obtained by means of trajectory surface hopping calculations that include non-adiabatic coupling between the ground 1A(') and excited 2A(') states of OH(X/A) + Kr, although the theoretical depolarization cross sections still significantly overestimate those obtained experimentally.

16.
Phys Rev Lett ; 111(18): 183202, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24237515

RESUMEN

Collision-induced rotational angular momentum orientation is a fundamental property of molecular scattering, which is sensitive to the balance between attractive and repulsive forces at play during collision. Here, we quantify a new mechanism leading to orientation, which is purely quantum mechanical in origin. Although the new mechanism is quite general, and will operate more widely in atomic and molecular scattering, it is observed here for impulsive hard shell collisions, for which the orientation vanishes classically. The quantum mechanism can thus be studied in isolation from other processes. The orientation is proposed to originate from the nonlocal nature of the quantum mechanical collision encounter.

17.
J Chem Phys ; 138(10): 104309, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23514491

RESUMEN

Rotational angular momentum alignment effects in the rotational inelastic scattering of NO(X) with Ar have been investigated by means of close-coupled quantum mechanical, quasi-classical trajectory, and Monte Carlo hard shell scattering calculations. It has been shown that the hard shell nature of the interaction potential at a collision energy of Ecoll = 66 meV is primarily responsible for the rotational alignment of the NO(X) molecule after collision. By contrast, the alternating trend in the quantum mechanical parity resolved alignment parameters with change in rotational state Δj reflects differences in the differential cross sections for NO(X) parity conserving and changing collisions, rather than an underlying difference in the collision induced rotational alignment. This suggests that the rotational alignment and the differential cross sections are sensitive to rather different aspects of the scattering dynamics. The applicability of the kinematic apse model has also been tested and found to be in excellent agreement with exact quantum mechanical scattering theory provided the collision energy is in reasonable excess of the well depth of the NO(X)-Ar potential energy surface.

18.
J Chem Phys ; 138(10): 104310, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23514492

RESUMEN

Rotational angular momentum alignment effects in the rotationally inelastic collisions of NO(X) with Ar have been investigated at a collision energy of 66 meV by means of hexapole electric field initial state selection coupled with velocity-map ion imaging final state detection. The fully quantum state resolved second rank renormalized polarization dependent differential cross sections determined experimentally are reported for a selection of spin-orbit conserving and changing transitions for the first time. The results are compared with the findings of previous theoretical investigations, and in particular with the results of exact quantum mechanical scattering calculations. The agreement between experiment and theory is generally found to be good throughout the entire scattering angle range. The results reveal that the hard shell nature of the interaction potential is predominantly responsible for the rotational alignment of the NO(X) upon collision with Ar.

19.
Med Intensiva ; 37(5): 316-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23040764

RESUMEN

BACKGROUND: Arterial catheterization is a frequent procedure in Intensive Care Units (ICUs). Accidental catheter removal (ACR) can cause severe and potentially life-threatening complications such as severe bleeding and vascular damage. Few data are available on accidental arterial catheter removal, and no studies have been found comparing the incidence of ACR between different arterial catheter sites. OBJECTIVE: To compare the incidence of ACR in femoral and radial arterial catheters. RESEARCH DESIGN: Retrospective study. SETTING: A polyvalent ICU. SUBJECTS: All consecutive patients subjected to femoral or radial arterial catheterization. MEASURES: The incidence of ACR per 100 catheter-days between groups was compared using Poisson regression. We considered ACR as the presence of unintended removal produced by the patient or healthcare personnel. RESULTS: A total of 2419 radial and 1085 femoral arterial catheters were inserted and remained in situ during 14,742 and 6497 days, respectively. We detected 45 cases of ACR with the femoral access and 162 cases with the radial access. The ACR rate was lower with the femoral access (4.1% vs 6.7% in the case of the radial access; p=0.003). Poisson regression analysis confirmed a lower incidence of ACR with the femoral versus the radial access (0.69 vs 1.10 ACR events per 100 catheter-days; OR 0.6, p=0.006, CI95% 0.01-0.83). CONCLUSIONS: The incidence of ACR was found to be lower with the femoral than with the radial arterial catheters. In order to improve patient safety, it could be interesting to exhaustively monitor the incidence of ACR and adopt preventive measures, since ACR can give rise to serious complications.


Asunto(s)
Catéteres de Permanencia , Remoción de Dispositivos , Errores Médicos/estadística & datos numéricos , Anciano , Estudios de Cohortes , Femenino , Arteria Femoral , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Arteria Radial , Estudios Retrospectivos
20.
Phys Chem Chem Phys ; 14(16): 5420-39, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-22433928

RESUMEN

The fully Λ-doublet resolved state-to-state differential cross sections (DCSs) for the collisions of NO(X, (2)Π, v = 0, j = 0.5) with Ar have been shown to depend sensitively on the conservation of the total parity of the NO molecular wavefunction. Parity changing collisions exhibit a single maximum only in the DCS, while parity conserving transitions exhibit multiple rainbow peaks. This behaviour is shown to arise directly from the constructive or destructive interference of collisions impacting on the two pointed ends and on the flatter middle of the NO molecule. A simple hard shell, four path model has been employed to determine the relative phase shifts of the paths contributing to the scattering amplitude. The model calculations using the V(sum) potential, together with the results of a quasi-quantum treatment, provide good qualitative agreement with the experimental spin-orbit conserving (ΔΩ = 0) DCSs, suggesting that the dynamics for all but the lowest Δj transitions are determined largely by the repulsive part of the potential. The collisions leading to spin-orbit changing transitions (ΔΩ = 1) have been also found to be dominated by repulsive forces, even for the lowest Δj values. However, they are less well reproduced by hard shell calculations, because of the crucial participation of the V(diff) potential in determining the outcome of these collisions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA