Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 28(24): 4132-4147, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646342

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, characterized by cyst formation and growth. Hyperproliferation is a major contributor to cyst growth. At the nexus of regulating proliferation, is 4E-BP1. We demonstrate that ADPKD mouse and rat models, ADPKD patient renal biopsies and PKD1-/- cells exhibited hyperphosphorylated 4E-BP1, a biomarker of increased translation and proliferation. We hypothesized that expression of constitutively active 4E-BP1 constructs (4E-BP1F113A and 4E-BP1R13AF113A) would decrease proliferation and reduce cyst expansion. Utilizing the Pkd1RC/RC mouse, we determined the effect of 4E-BP1F113A on PKD. Unexpectedly, 4E-BP1F113A resulted in increased cyst burden and suppressed apoptosis markers, increased anti-apoptotic Bcl-2 protein and increased mitochondrial proteins. Exogenous 4E-BP1 enhanced proliferation, decreased apoptosis, increased anti-apoptotic Bcl-2 protein, impaired NADPH oxidoreductase activity, increased mitochondrial proteins and increased superoxide production in PKD patient-derived renal epithelial cells. Reduced 4E-BP1 expression suppressed proliferation, restored apoptosis and improved cellular metabolism. These findings provide insight into how cyst-lining cells respond to 4E-BP1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , NADH NADPH Oxidorreductasas/metabolismo , Fosforilación , Enfermedades Renales Poliquísticas/patología , Riñón Poliquístico Autosómico Dominante/patología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ratas , Canales Catiónicos TRPP/metabolismo
2.
Am J Physiol Renal Physiol ; 317(1): F187-F196, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042058

RESUMEN

Autosomal dominant polycystic kidney disease (PKD) is characterized by cyst formation and growth, which are partially driven by abnormal proliferation of tubular cells. Proproliferative mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2) are activated in the kidneys of mice with PKD. Sirolimus indirectly inhibits mTORC1. Novel mTOR kinase inhibitors directly inhibit mTOR kinase, resulting in the inhibition of mTORC1 and mTORC2. The aim of the present study was to determine the effects of sirolimus versus the mTOR kinase inhibitor torin2 on cyst growth and kidney function in the Pkd1 p.R3277C (Pkd1RC/RC) mouse model, a hypomorphic Pkd1 model orthologous to the human condition, and to determine the effects of sirolimus versus torin2 on mTORC1 and mTORC2 signaling in PKD1-/- cells and in the kidneys of Pkd1RC/RC mice. In vitro, both inhibitors reduced mTORC1 and mTORC2 phosphorylated substrates and negatively impacted cellular metabolic activity, as measured by MTT assay. Pkd1RC/RC mice were treated with sirolimus or torin2 from 50 to 120 days of age. Torin2 was as effective as sirolimus in decreasing cyst growth and improving loss of kidney function. Both sirolimus and torin2 decreased phosphorylated S6 protein, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1, phosphorylated Akt, and proliferation in Pkd1RC/RC kidneys. In conclusion, torin2 and sirolimus were equally effective in decreasing cyst burden and improving kidney function and mediated comparable effects on mTORC1 and mTORC2 signaling and proliferation in the Pkd1RC/RC kidney.


Asunto(s)
Túbulos Renales/efectos de los fármacos , Mutación , Naftiridinas/farmacología , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Canales Catiónicos TRPP/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Túbulos Renales/enzimología , Túbulos Renales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Fosforilación , Riñón Poliquístico Autosómico Dominante/enzimología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/fisiopatología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
3.
Kidney Int ; 95(3): 590-610, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30709662

RESUMEN

Acute kidney injury (AKI) is a systemic disease associated with widespread effects on distant organs, including the heart. Normal cardiac function is dependent on constant ATP generation, and the preferred method of energy production is via oxidative phosphorylation. Following direct ischemic cardiac injury, the cardiac metabolome is characterized by inadequate oxidative phosphorylation, increased oxidative stress, and increased alternate energy utilization. We assessed the impact of ischemic AKI on the metabolomics profile in the heart. Ischemic AKI was induced by 22 minutes of renal pedicle clamping, and 124 metabolites were measured in the heart at 4 hours, 24 hours, and 7 days post-procedure. Forty-one percent of measured metabolites were affected, with the most prominent changes observed 24 hours post-AKI. The post-AKI cardiac metabolome was characterized by amino acid depletion, increased oxidative stress, and evidence of alternative energy production, including a shift to anaerobic forms of energy production. These metabolomic effects were associated with significant cardiac ATP depletion and with echocardiographic evidence of diastolic dysfunction. In the kidney, metabolomics analysis revealed shifts suggestive of energy depletion and oxidative stress, which were reflected systemically in the plasma. This is the first study to examine the cardiac metabolome after AKI, and demonstrates that effects of ischemic AKI on the heart are akin to the effects of direct ischemic cardiac injury.


Asunto(s)
Lesión Renal Aguda/metabolismo , Síndrome Cardiorrenal/etiología , Insuficiencia Cardíaca Diastólica/etiología , Isquemia/metabolismo , Estrés Oxidativo , Lesión Renal Aguda/complicaciones , Lesión Renal Aguda/etiología , Animales , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Metabolismo Energético , Corazón/diagnóstico por imagen , Insuficiencia Cardíaca Diastólica/diagnóstico , Insuficiencia Cardíaca Diastólica/metabolismo , Humanos , Isquemia/complicaciones , Isquemia/etiología , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Metaboloma , Metabolómica , Ratones , Miocardio/metabolismo , Miocardio/patología
4.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226747

RESUMEN

Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies heavily on understanding the molecular pathophysiology of cisplatin-induced AKI. Rodent models have provided mechanistic insight into the pathophysiology of cisplatin-induced AKI. In the subsequent review, we provide a detailed discussion of recent advances in the cisplatin-induced AKI phenotype, principal mechanistic findings of injury and therapy, and pre-clinical use of AKI rodent models. Cisplatin-induced AKI murine models faithfully develop gross manifestations of clinical AKI such as decreased kidney function, increased expression of tubular injury biomarkers, and tubular injury evident by histology. Pathways involved in AKI include apoptosis, necrosis, inflammation, and increased oxidative stress, ultimately providing a translational platform for testing the therapeutic efficacy of potential interventions. This review provides a discussion of the foundation laid by cisplatin-induced AKI rodent models for our current understanding of AKI molecular pathophysiology.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/terapia , Animales , Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Neoplasias/tratamiento farmacológico
5.
Am J Physiol Renal Physiol ; 314(3): F356-F366, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070568

RESUMEN

The effect of IL-33 deficiency on acute kidney injury (AKI) and cancer growth in a 4-wk model of cisplatin-induced AKI in mice with cancer was determined. Mice were injected subcutaneously with murine lung cancer cells. Ten days later, cisplatin (10 mg·kg-¹·wk-¹) was administered weekly for 4 wk. The increase in kidney IL-33 preceded the AKI and tubular injury, suggesting that IL-33 may play a causative role. However, the increase in serum creatinine, blood urea nitrogen, serum neutrophil gelatinase-associated lipoprotein, acute tubular necrosis, and apoptosis scores in the kidney in cisplatin-induced AKI was the same in wild-type and IL-33-deficient mice. There was an increase in kidney expression of pro-inflammatory cytokines CXCL1 and TNF-α, known mediators of cisplatin-induced AKI, in IL-33-deficient mice. Surprisingly, tumor weight, tumor volume, and tumor growth were significantly decreased in IL-33-deficient mice, and the effect of cisplatin on tumors was enhanced in IL-33-deficient mice. As serum IL-33 was increased in cisplatin-induced AKI in mice, it was determined whether serum IL-33 is an early biomarker of AKI in patients undergoing cardiac surgery. Immediate postoperative serum IL-33 concentrations were higher in matched AKI cases compared with non-AKI controls. In conclusion, even though the cancer grows slower in IL-33-deficient mice, the data that IL-33 deficiency does not protect against AKI in a clinically relevant model suggest that IL-33 inhibition may not be useful to attenuate AKI in patients with cancer. However, serum IL-33 may serve as a biomarker of AKI.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Antineoplásicos/toxicidad , Proliferación Celular/efectos de los fármacos , Cisplatino/toxicidad , Interleucina-33/deficiencia , Riñón/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Biomarcadores/sangre , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Estudios de Casos y Controles , Femenino , Humanos , Interleucina-33/sangre , Interleucina-33/genética , Riñón/metabolismo , Riñón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo , Carga Tumoral/efectos de los fármacos
6.
Cell Death Dis ; 12(3): 248, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674554

RESUMEN

Many surgical models are used to study kidney and other diseases in mice, yet the effects of the surgical procedure itself on the kidney and other tissues have not been elucidated. In the present study, we found that both sham surgery and unilateral nephrectomy (UNX), which is used as a model of renal compensatory hypertrophy, in mice resulted in increased mammalian target of rapamycin complex 1/2 (mTORC1/2) in the remaining kidney. mTORC1 is known to regulate lysosomal biogenesis and autophagy. Genes associated with lysosomal biogenesis and function were decreased in sham surgery and UNX kidneys. In both sham surgery and UNX, there was suppressed autophagic flux in the kidney as indicated by the lack of an increase in LC3-II or autophagosomes seen on immunoblot, IF and EM after bafilomycin A1 administration and a concomitant increase in p62, a marker of autophagic cargo. There was a massive increase in pro-inflammatory cytokines, which are known to activate ERK1/2, in the serum after sham surgery and UNX. There was a large increase in ERK1/2 in sham surgery and UNX kidneys, which was blocked by the MEK1/2 inhibitor, trametinib. Trametinib also resulted in a significant decrease in p62. In summary, there was an intense systemic inflammatory response, an ERK-mediated increase in p62 and suppressed autophagic flux in the kidney after sham surgery and UNX. It is important that researchers are aware that changes in systemic pro-inflammatory cytokines, ERK1/2 and autophagy can be caused by sham surgery as well as the kidney injury/disease itself.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Enfermedades Renales/metabolismo , Riñón/cirugía , Nefrectomía/efectos adversos , Animales , Proteínas Relacionadas con la Autofagia/genética , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/genética , Enfermedades Renales/patología , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Metabolómica , Ratones Endogámicos C57BL , Transducción de Señal
7.
Cell Signal ; 75: 109760, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866627

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder characterized by kidney cyst growth often resulting in end-stage renal disease. There is growing attention on understanding the role of impaired autophagy in ADPKD. Trehalose (TRE) has been shown to increase both protein stability and aggregate clearance and induce autophagy in neurodegenerative diseases. TRE treatment in wild type mice compared to vehicle resulted in increased expression in the kidney of Atg12-5 complex and increased Rab9a, autophagy-related proteins that play a role in the formation of autophagosomes. Thus, the aim of the study was to determine the effect of TRE on cyst growth and autophagy-related proteins, in the hypomorphic Pkd1RC/RC mouse model of ADPKD. Pkd1RC/RC mice were treated 2% TRE in water from days 50 to 120 of age. TRE did not slow cyst growth or improve kidney function or affect proliferation and apoptosis in Pkd1RC/RC kidneys. In Pkd1RC/RC vs. wild type kidneys, expression of the Atg12-5 complex was inhibited by TRE resulting in increased free Atg12 and TRE was unable to rescue the deficiency of the Atg12-5 complex. Rab9a was decreased in Pkd1RC/RC vs. wild type kidneys and unaffected by TRE. The TRE-induced increase in p62, a marker of autophagic cargo, that was seen in normal kidneys was blocked in Pkd1RC/RC kidneys. In summary, the autophagy phenotype in Pkd1RC/RC kidneys was characterized by decreases in crucial autophagy-related proteins (Atg12-5 complex, Atg5, Atg16L1), decreased Rab9a and increased mTORC1 (pS6S240/244, pmTORS2448) proteins. TRE increased Atg12-5 complex, Rab9a and p62 in normal kidneys, but was unable to rescue the deficiency in autophagy proteins or suppress mTORC1 in Pkd1RC/RC kidneys and did not protect against cyst growth.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Proteína Quinasa C/metabolismo , Trehalosa/farmacología , Animales , Autofagia/efectos de los fármacos , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al GTP rab/metabolismo
8.
Cell Signal ; 74: 109730, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32730856

RESUMEN

Cardiac hypertrophy is common in autosomal dominant polycystic kidney disease (ADPKD) patients. We found increased heart weight in Pkd1RC/RC and Pkd2WS25/+ mouse models of ADPKD. As there is a link between increased heart weight and mammalian target of rapamycin (mTOR), the aim of the study was to determine mTOR complex 1 and 2 signaling proteins in the heart in the Pkd1RC/RC mouse model of PKD. In 70 day old Pkd1RC/RC hearts, on immunoblot analysis, there was a large increase in p-AMPKThr172, a known autophagy inducer, and an increase in p-AktSer473 and p-AktThr308, but no increase in other mTORC1/2 proteins (p-S6Ser240/244, p-mTORSer2448). In 150 day old Pkd1RC/RC hearts, there was an increase in mTORC1 (p-S6Ser240/244) and mTOR-related proteins (p-AktThr308, p-GSK3ßSer9, p-AMPKThr172). As the mTOR pathway is the master regulator of autophagy, autophagy proteins were measured. There was an increase in p-Beclin-1 (BECN1), an autophagy regulator and activating molecule in Beclin-1-regulated autophagy (AMBRA1), a regulator of Beclin that play a role in autophagosome formation, an early stage of autophagy. There was a defect in the later stage of autophagy, the fusion of the autophagosome with the lysosome, known as autophagic flux, as evidenced by the lack of an increase in LC3-II, a marker of autophagosomes, with the lysosomal inhibitor bafilomycin, in both 70 day old and 150 day old hearts. To determine the role of autophagy in causing increased heart weight, Pkd1RC/RC were treated with 2-deoxyglucose (2-DG) or Tat-Beclin1 peptide, agents known to induce autophagy. 2-DG treatment from 150 to 350 days of age, a time period when increased heart weight developed, did not reduce the increased heart weight. Unexpectedly, Tat-Beclin 1 peptide treatment from 70 to 120 days of age resulted in increased heart weight. In summary, there is suppressed autophagic flux in the heart at an early age in Pkd1RC/RC mice. Increased mTOR signaling in older mice is associated suppressed autophagic flux. There was a large increase in p-AMPKThr172, a known autophagy inducer, in both young and old mice. 2-DG treatment did not impact increased heart weight and Tat-Beclin1 peptide increased heart weight.


Asunto(s)
Cardiomegalia/metabolismo , Riñón Poliquístico Autosómico Dominante , Serina-Treonina Quinasas TOR/fisiología , Animales , Autofagia , Modelos Animales de Enfermedad , Ratones , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología
9.
Cell Signal ; 71: 109605, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32194168

RESUMEN

In a clinically-relevant model of 4 week, low-dose cisplatin-induced AKI, mice were injected subcutaneously with non small cell lung cancer (NSCLC) cells that harbor an activating Kirsten rat sarcoma viral oncogene homolog (KRAS)G12V mutation. Phospho extracellular signal-regulated kinase1/2 (pERK1/2) expression in kidney and tumors was decreased by the MEK1/2 inhibitors, U0126 and trametinib, that potently inhibit pERK1/2. U0126 resulted in a significant improvement in kidney function, acute tubular necrosis (ATN) and tubular cell apoptosis in mice with AKI. Genes that were significantly decreased by U0126 were heat shock protein 1, cyclin-dependent kinase 4 (CDK4) and stratifin (14-3-3σ). U0126 resulted in a significant decrease in tumor weight and volume and significantly increased the chemotherapeutic effect of cisplatin. Trametinib, a MEK1/2 inhibitor that is FDA-approved for the treatment of cancer, did not result in functional protection against AKI or worse AKI, but dramatically decreased tumor growth more than cisplatin. Smaller tumors in cisplatin or MEK1/2 inhibitor-treated mice were not related to changes in microtubule-associated proteins 1A/1B light chain 3B (LC3-II), p62, cleaved caspase-3, granzyme B, or programmed death-ligand 1 (PD-L1). In summary, despite ERK inhibition by both U0126 and trametinib, only U0126 protected against AKI suggesting that the protection against AKI by U0126 was due to an off-target effect independent of ERK inhibition. The effect of U0126 to decrease AKI may be mediated by inhibition of heat shock protein 1, CDK4 or stratifin (14-3-3σ). Trametinib was more effective than cisplatin in decreasing tumor growth, but unlike cisplatin, trametinib did not cause AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Cisplatino/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Butadienos/farmacología , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Riñón/efectos de los fármacos , Riñón/lesiones , Riñón/patología , Lipocalina 2/metabolismo , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Neoplasias/metabolismo , Nitrilos/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Carga Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA