Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805647

RESUMEN

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Asunto(s)
Acaricidas , Timol , Toluidinas , Varroidae , Animales , Toluidinas/farmacología , Abejas/parasitología , Varroidae/efectos de los fármacos , Varroidae/fisiología , Timol/farmacología , Apicultura/métodos
2.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805648

RESUMEN

Agrochemical exposure is a major contributor to ecological declines worldwide, including the loss of crucial pollinator species. In addition to direct toxicity, field-relevant doses of pesticides can increase species' vulnerabilities to other stressors, including parasites. Experimental field demonstrations of potential interactive effects of pesticides and additional stressors are rare, as are tests of mechanisms via which pollinators tolerate pesticides. Here, we controlled honey bee colony exposure to field-relevant concentrations of 2 neonicotinoid insecticides (clothianidin and thiamethoxam) in pollen and simultaneously manipulated intracolony genetic heterogeneity. We showed that exposure increased rates of Varroa destructor (Anderson and Trueman) parasitism and that while increased genetic heterogeneity overall improved survivability, it did not reduce the negative effect size of neonicotinoid exposure. This study is, to our knowledge, the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.


Asunto(s)
Variación Genética , Insecticidas , Neonicotinoides , Varroidae , Animales , Abejas/parasitología , Abejas/efectos de los fármacos , Varroidae/efectos de los fármacos , Neonicotinoides/toxicidad , Insecticidas/toxicidad , Tiazoles/toxicidad , Tiametoxam , Guanidinas/toxicidad , Interacciones Huésped-Parásitos , Nitrocompuestos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA