Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606686

RESUMEN

Ion selectivity is the basis for designing smart nanopore/channel-based devices, e.g., ion separators and biosensors. Quantitative characterization of ion selectivities in nanopores often employs the Nernst or Goldman-Hodgkin-Katz (GHK) equation to interpret transmembrane potentials. However, the direction of the measured transmembrane potential drop is not specified in these equations, and selectivity values calculated using absolute values of transmembrane potentials do not directly reveal the ion for which the membrane is selective. Moreover, researchers arbitrarily choose whether to use the Nernst or GHK equation and overlook the significant differences between them, leading to ineffective quantitative comparisons between studies. This work addresses these challenges through (a) specifying the transmembrane potential (sign) and salt concentrations in terms of working and reference electrodes and the solutions in which they reside when using the Nernst and GHK equations, (b) reporting of both Nernst-selectivity and GHK-selectivity along with solution compositions and transmembrane potentials when comparing different nanopores/channels, and (c) performing simulations to define an ideal selectivity for nanochannels. Experimental and modeling studies provide significant insight into these fundamental equations and guidelines for the development of nanopore/channel-based devices.

2.
Anal Chem ; 96(16): 6347-6355, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607313

RESUMEN

The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Glicosilación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/análisis , Humanos , Polisacáridos/análisis , Polisacáridos/química , Cromatografía Liquida , Pepsina A/metabolismo , Pepsina A/química , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Animales , Membranas Artificiales
3.
Chem Soc Rev ; 52(6): 1983-1994, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36794856

RESUMEN

Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.


Asunto(s)
Nanoporos , Membranas Artificiales , Análisis de Secuencia de ADN/métodos , Agua
4.
Angew Chem Int Ed Engl ; 63(25): e202401729, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38657037

RESUMEN

We developed a simple, paper-based device that enables sensitive detection by mass spectrometry (MS) without solid phase extraction or other sample preparation. Using glass fiber filter papers within a 3D printed holder, the device employs electrokinetic manipulations to stack, separate, and desalt charged molecules on paper prior to spray into the MS. Due to counter-balanced electroosmotic flow and electrophoresis, charged analytes stack on the paper and desalting occurs in minutes. One end of the paper strip was cut into a sharp point and positioned near the inlet of a MS. The stacked analyte bands move toward the paper tip with the EOF where they are ionized by paper spray. The device was applied to analysis of PFAS in tap water with sub part-per-trillion detection limits in less than ten minutes with no sample pretreatment. Analysis of opioids in urine also occurs in minutes. The crucial parameters to enable stacking, separation, and MS ionization of both positively and negatively charged analytes were determined and optimized. Experimental and computational modeling studies confirm the electrokinetic stacking and analyte transport mechanisms. On-paper separations were carried out by stacking analyte bands at different locations depending on their electrophoretic mobility, achieving baseline separation in some cases.


Asunto(s)
Analgésicos Opioides , Espectrometría de Masas , Papel , Espectrometría de Masas/métodos , Analgésicos Opioides/orina , Analgésicos Opioides/análisis , Humanos , Agua/química , Fluorocarburos/química , Fluorocarburos/análisis , Fluorocarburos/orina , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/orina
5.
Anal Chem ; 95(22): 8541-8551, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37216615

RESUMEN

Therapeutic monoclonal antibodies (mAbs) provide effective treatments for many diseases, including cancer, autoimmune disorders, and, lately, COVID-19. Monitoring the concentrations of mAbs is important during their production and subsequent processing. This work demonstrates a 5 min quantitation of most human immunoglobulin G (IgG) antibodies through capture of mAbs in membranes modified with ligands that bind to the fragment crystallizable (Fc) region. This enables binding and quantitation of most IgG mAbs. Layer-by-layer (LBL) adsorption of carboxylic acid-rich polyelectrolytes in glass-fiber membranes in 96-well plates allows functionalization of the membranes with Protein A or a peptide, oxidized Fc20 (oFc20), with high affinity for the Fc region of human IgG. mAb capture occurs in <1 min during the flow of solutions through modified membranes, and subsequent binding of a fluorophore-labeled secondary antibody enables quantitation of the captured mAbs using fluorescence. The intra- and inter-plate coefficients of variations (CV) are <10 and 15%, respectively, satisfying the acceptance criteria for many assays. The limit of detection (LOD) of 15 ng/mL is on the high end of commercial enzyme-linked immunosorbent assays (ELISAs) but certainly low enough for monitoring of manufacturing solutions. Importantly, the membrane-based method requires <5 minutes, whereas ELISAs typically take at least 90 min. Membranes functionalized with oFc20 show greater mAb binding and lower LODs than membranes with Protein A. Thus, the membrane-based 96-well-plate assay, which is effective in diluted fermentation broths and in mixtures with cell lysates, is suitable for near-real-time monitoring of the general class of human IgG mAbs during their production.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Humanos , Ligandos , Inmunoglobulina G , Ensayo de Inmunoadsorción Enzimática/métodos
6.
Analyst ; 148(7): 1611-1619, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36912593

RESUMEN

This research employs pepsin-containing membranes to digest proteins online after a capillary electrophoresis (CE) separation and prior to tandem mass spectrometry. Proteolysis after the separation allows the peptides from a given protein to enter the mass spectrometer in a single plug. Thus, migration time can serve as an additional criterion for confirming the identification of a peptide. The membrane resides in a sheath-flow electrospray ionization (ESI) source to enable digestion immediately before spray into the mass spectrometer, thus limiting separation of the digested peptides. Using the same membrane, digestion occurred reproducibly during 20 consecutive CE analyses performed over a 10 h period. Additionally, after separating a mixture of six unreduced proteins with CE, online digestion facilitated protein identification with at least 2 identifiable peptides for all the proteins. Sequence coverages were >75% for myoglobin and carbonic anhydrase II but much lower for proteins containing disulfide bonds. Development of methods for efficient separation of reduced proteins or identification of cross-linked peptides should enhance sequence coverages for proteins with disulfide bonds. Migration times for the peptides identified from a specific protein differed by <∼30 s, which allows for rejection of some spurious peptide identifications.


Asunto(s)
Péptidos , Espectrometría de Masa por Ionización de Electrospray , Proteolisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Péptidos/química , Electroforesis Capilar/métodos , Mioglobina , Disulfuros
7.
Anal Chem ; 94(2): 884-891, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34982935

RESUMEN

Quantitation of therapeutic monoclonal antibodies (mAbs) in human serum could ensure that patients have adequate levels of mAbs for effective treatment. This research describes the use of affinity, glass-fiber membranes in a 96-well-plate format for rapid (<5 min) quantitation of the therapeutic mAb trastuzumab and a mAb against the SARS-CoV-2 spike protein. Adsorption of a poly(acrylic acid)-containing film in membrane pores and activation of the -COOH groups in the film enable covalent-linking of affinity peptides or proteins to the membrane. Passage of mAb-containing serum through the affinity membrane results in mAb capture within 1 min. Subsequent rinsing, binding of a secondary antibody conjugated to a fluorophore, and a second rinse yield mAb-concentration-dependent fluorescence intensities in the wells. Calibration curves established from analyses on different days have low variability and allow determination of mAb levels in separately prepared samples with an average error <10%, although errors in single-replicate measurements may reach 40%. The assays can occur in diluted serum with physiologically relevant mAb concentrations, as well as in undiluted serum. Thus, the combination of 96-well plates containing affinity membranes, a microplate reader, and a simple vacuum manifold affords convenient mAb quantitation in <5 min.


Asunto(s)
COVID-19 , SARS-CoV-2 , Afinidad de Anticuerpos , Humanos , Glicoproteína de la Espiga del Coronavirus , Trastuzumab
8.
Anal Chem ; 93(21): 7562-7570, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33999602

RESUMEN

Effective monoclonal antibody (mAb) therapies require a threshold mAb concentration in patient serum. Moreover, the serum concentration of the mAb Bevacizumab should reside in a specific range to avoid side effects. Methods for conveniently determining the levels of mAbs in patient sera could allow for personalized dosage schedules that lead to more successful treatments. This work utilizes microporous nylon membranes functionalized with antibody-binding peptides to capture Bevacizumab, Rituximab, or Panitumumab from diluted (25%) serum. Modification of the capture-peptide terminus is often crucial to creating the affinity necessary for effective binding. The high purity of eluted mAbs allows for their quantitation using native fluorescence, and membranes are effective in spin devices that can be used in any laboratory. The technique is effective over the therapeutic range of Bevacizumab concentrations. Future work aims at further modifications to develop rapid point-of-care devices and decrease detection limits.


Asunto(s)
Anticuerpos Monoclonales , Péptidos , Bevacizumab , Humanos , Panitumumab , Porosidad , Rituximab
9.
Anal Chem ; 93(9): 4291-4298, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33625211

RESUMEN

Nanochannel-based fluidic diodes display ion selectivity and ion current rectification (ICR), which may prove to be important in energy-harvesting devices and biosensors. This paper reports asymmetric functionalization of the outer surface of a flexible nanochannel polymer membrane to create fluidic diodes that give ICR. Layer-by-layer (LbL) adsorption with cross-linking of only the underlying part of the polyelectrolyte nanofilm leads to a porosity step across the film. The combination of a high effective surface charge density and the porosity step in the film leads to a remarkable maximum ICR factor of ∼200 with a pH gradient across the film. Incorporation of pH-sensitive polyelectrolyte components enables the ICR factor to increase an order of magnitude on going from pH 8 to pH 3. Moreover, the coated membrane shows excellent anion selectivity. Thus, LbL adsorption with partial cross-linking provides a simple method for creating coated nanochannel membranes that serve as pH-responsive ionic diodes for potential chemical/biosensors.

10.
Anal Chem ; 92(17): 11912-11920, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32867494

RESUMEN

Identifying the target proteins of small-molecule drug candidates is important for determining their molecular mechanisms of action. Porous membranes derivatized with such small molecules may provide an attractive target-identification platform due to a high protein-capture efficiency during flow through membrane pores. This work employs carbonic anhydrase II (CAII) binding to immobilized 4-(2-aminoethyl)benzenesulfonamide (AEBSA) to examine the efficiency and selectivity of affinity capture in modified membranes. Selective elution of captured protein, tryptic digestion, tandem mass spectrometry analysis, and label-free quantification (LFQ) identify CAII as the dominant AEBSA target in diluted serum or cell lysate. CAII identification relies on determining the ratio of protein LFQ intensities in sample and control experiments, where free AEBSA added to the control loading solution limits CAII capture. Global proteomics shows that the spiked CAII is the only protein with a log2 ratio consistently >2, and the detection limit for CAII identification is 0.004 wt % of the total protein in 1:4 diluted human serum or 0.024 wt % of the total protein from breast cancer cell lysates. The same approach also identifies native CAII in human kidney cell lysate as an AEBSA target. Comparison of affinity capture using membranes, Affi-Gel 10 resin or M-270 Dynabeads derivatized with AEBSA suggests that only membranes allow identification of low-abundance CAII as a target.


Asunto(s)
Cromatografía de Afinidad/métodos , Membranas/metabolismo , Unión Proteica/fisiología , Humanos
11.
Langmuir ; 35(40): 13243-13256, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31509705

RESUMEN

Ion passage through ion-exchange membranes is vital in electrodialysis desalination, batteries and fuel cells, and water splitting. Simplified models of ion transport through such membranes frequently assume complete exclusion of co-ions (ions with the same sign of charge as the fixed charge in the membrane) from the membrane. However, a second assumption of constant counterion electrochemical potentials across the membrane leads to simple analytical expressions for ion fluxes and transmembrane potentials. Moreover, linear corrections to account for a small membrane electrical resistance yield analytical expressions with a wider applicability. For bi-ionic potential measurements and current-induced concentration polarization at low salt concentrations, these analytical solutions match the fluxes and potentials obtained numerically without the limiting assumptions. This gives confidence in both the limiting assumptions (under appropriate conditions) and the numerical solutions. At low ion concentrations, the analytical solutions may enable rapid characterization of membrane coatings or boundary layers in solution, and such boundary layers are important in many applications of ion-exchange membranes. In fact, the assumption of complete co-ion exclusion is sometimes more limiting than the constraint of constant electrochemical potentials of counterions across the membrane. Remarkably, this limiting case readily yields the ion accumulation and depletion regions above "ion-exchange patches" that reside beneath a solution with an applied electric field. Such regions are important for sample preconcentration in microfluidic devices.

12.
Anal Chem ; 90(20): 12161-12167, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30207156

RESUMEN

Rapid, convenient methods for monoclonal antibody (mAb) isolation are critical for determining the concentrations of therapeutic mAbs in human serum. This work uses porous nylon membranes modified with a HER2 peptide mimotope, KGSGSGSQLGPYELWELSH (KH19), for rapid affinity capture of Herceptin, a mAb used to treat breast cancer. Covalent linking of KH19 to poly(acrylic acid)-containing films in porous nylon leads to a Herceptin-binding capacity of 10 mg per mL of membrane and allows selective Herceptin capture from diluted (1:3) human serum in 5 min. Liquid chromatography-mass spectrometry demonstrates the high purity of eluted Herceptin. Moreover, the fluorescence intensity of the protein eluted from membranes increases linearly with the amount of Herceptin spiked in loading solutions containing diluted (1:3) human serum. These results demonstrate the promise of mimotope-modified membranes for Herceptin analysis that does not require secondary antibodies or derivatization with fluorescent labels. Thus, mimotope-containing membranes may form part of a simple benchtop analysis system for assessing the concentrations of therapeutic mAbs.


Asunto(s)
Proteínas Inmovilizadas/química , Fragmentos de Péptidos/química , Receptor ErbB-2/química , Trastuzumab/análisis , Trastuzumab/aislamiento & purificación , Adsorción , Humanos , Nylons/química , Tamaño de la Partícula , Porosidad , Propiedades de Superficie , Trastuzumab/sangre
13.
Analyst ; 143(16): 3907-3917, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30039812

RESUMEN

Proteolytic digestion is an important step in characterizing protein sequences and post-translational modifications (PTMs) using mass spectrometry (MS). This study uses pepsin- or trypsin-containing spin membranes for rapid digestion of single proteins or simple protein mixtures prior to ultrahigh-resolution Orbitrap MS analysis. Centrifugation of 100 µL of pretreated protein solutions through the functionalized membranes requires less than 1 min and conveniently digests proteins into large peptides that aid in confirming specific protein sequence variations and PTMs. Peptic and tryptic peptides from spin digestion of apomyoglobin and four commercial monoclonal antibodies (mAbs) typically cover 100% of the protein sequences in direct infusion MS analysis. Increasing the spin rate leads to a higher fraction of large peptic peptides for apomyoglobin, and MS analysis of peptic and tryptic peptides reveals mAb PTMs such as N-terminal pyroglutamate formation, C-terminal lysine clipping and glycosylation. Relative to overnight in-solution digestion of mAbs, spin digestion yields higher sequence coverages. Spin-membrane digestion followed by infusion MS readily differentiates a mAb to the Ebola virus from a related antibody that differs by addition of a single amino acid.


Asunto(s)
Péptidos/química , Procesamiento Proteico-Postraduccional , Proteolisis , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Apoproteínas/química , Espectrometría de Masas , Mioglobina/química , Pepsina A/química , Tripsina/química
14.
Analyst ; 142(14): 2578-2586, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28607960

RESUMEN

Proteolysis is often a critical step in protein characterization via mass spectrometry. Compared to complete digestion, limited proteolysis gives larger peptides, and the dominant cleavage sites may identify highly accessible, flexible protein regions. This paper explores controlled proteolysis in porous nylon membranes containing immobilized trypsin. Passage of protein solutions through ∼100 µm thick membranes provides reaction residence times as short as milliseconds to limit digestion. Additionally, variation of the membrane pore size and the protease-immobilization method (electrostatic adsorption or covalent anchoring to adsorbed polymer in membrane pores) affords control over the proteolysis rate. When digesting the highly labile protein ß-casein, large membrane pores (5.0 µm) and covalent enzyme anchoring to adsorbed polymer lead to particularly long tryptic peptides. With the more trypsin-resistant proteins cytochrome c and apomyoglobin, in-membrane proteolysis with short residence times, 1.2 µm membrane pores, and trypsin electrostatically immobilized to an adsorbed polyanion cleaves the proteins after lysine residues in flexible regions. For both cytochrome c and apomyoglobin, cleavages in an interhelix region yield two particularly large peptides that cover the entire protein sequence.


Asunto(s)
Enzimas Inmovilizadas/química , Proteolisis , Tripsina/química , Adsorción , Apoproteínas/química , Caseínas/química , Citocromos c/química , Mioglobina/química , Porosidad
15.
Appl Environ Microbiol ; 82(16): 4982-93, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27287319

RESUMEN

UNLABELLED: This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rpre (PEM) = 74.8% ± 9.7%) than with CS-blocked membranes (rpre (CS) = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpost (PEM) = 99.5% ± 6.6% and rpost (CS) = 98.8% ± 7.7%) and tap water (rpost (PEM) = 89% ± 15% and rpost (CS) = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpost (CS) = 88.6% ± 4.3% and rpost (PEM) = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE: Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery of HAdV 40 was evaluated, with postelution recoveries from ultrapure water (99%), tap water (∼91%), and high-carbon-content surface water (∼84%) being demonstrated. These results are significant because of the very low adenovirus recoveries that have been reported, to date, for other methods. The recovery data were interpreted in terms of specific interactions, and the eluent composition was designed accordingly to maximize HAdV 40 recovery.


Asunto(s)
Adenovirus Humanos/aislamiento & purificación , Agua Potable/virología , Agua Dulce/virología , Ultrafiltración , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Polielectrolitos , Polímeros/metabolismo , Polifosfatos/metabolismo , Polisorbatos/metabolismo , Compuestos de Sodio/metabolismo , Tensoactivos/metabolismo , Ultrafiltración/instrumentación , Virión/aislamiento & purificación
16.
Langmuir ; 32(11): 2644-58, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26894470

RESUMEN

Reverse osmosis and nanofiltration (NF) employ composite membranes whose ultrathin barrier layers are significantly more permeable to water than to salts. Although solution-diffusion models of salt transport through barrier layers typically assume ubiquitous electroneutrality, in the case of ultrathin selective skins and low ion partition coefficients, space-charge regions may occupy a significant fraction of the membrane barrier layer. This work investigates the implications of these deviations from electroneutrality on salt transport. Both immobile external surface charge and unequal cation and anion solvation energies in the barrier layer lead to regions with excess mobile charge, and the size of these regions increases with decreasing values of either feed concentrations or ion partition coefficients. Moreover, the low concentration of the more excluded ion in the space-charge region can greatly increase resistance to salt transport to enhance salt rejection during NF. These effects are especially pronounced for membranes with a fixed external surface charge density whose sign is the same as that of the more excluded ion in a salt. Because of the space-charge regions, the barrier-layer resistance to salt transport initially rises rapidly with increasing barrier thickness and then plateaus or even declines within a certain thickness range. This trend in resistance implies that thin, defect-free barrier layers will exhibit higher salt rejections than thicker layers during NF at a fixed transmembrane pressure. Deviations from electroneutrality are consistent with both changes in NF salt rejections that occur upon changing the sign of the membrane fixed external surface charge, and CaCl2 rejections that in some cases may first decrease, then increase and then decrease again with increasing CaCl2 concentrations in NF feed solutions.

17.
Anal Chem ; 87(24): 11984-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26629589

RESUMEN

This paper presents rapid protein purification and proteolysis methods that integrate membrane technology and pipet tips. Pushing a protein-containing solution through a protease-modified membrane at the end of a pipet tip digests proteins in 30 s or less, and the short proteolysis time avoids reformation of disulfide bonds to enable tryptic digestion without alkylation of cysteine residues. Moreover, proteolysis is more complete than digestion for 30 min in solution. Antibody digestion at the end of a pipet tip leads to 100% peptide coverage in MS analyses. Similarly, when membranes contain Ni(2+) complexes, pipetting aqueous polyhistidine-tagged protein through the membrane and subsequent rinsing and elution yield purified polyhistidine-tagged protein in 2 min. These applications demonstrate the potential for combining functional membranes and pipet tips for rapid sample purification and pretreatment.


Asunto(s)
Técnicas de Química Analítica/métodos , Membranas Artificiales , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Técnicas de Química Analítica/normas , Complejos de Coordinación/química , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Níquel/química , Péptido Hidrolasas/metabolismo , Proteolisis , Factores de Tiempo , Tripsina/metabolismo
18.
Anal Chem ; 87(21): 10942-9, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26455365

RESUMEN

Monoclonal antibodies (mAbs) are the fastest growing class of therapeutic drugs, because of their high specificities to target cells. Facile analysis of therapeutic mAbs and their post-translational modifications (PTMs) is essential for quality control, and mass spectrometry (MS) is the most powerful tool for antibody characterization. This study uses pepsin-containing nylon membranes as controlled proteolysis reactors for mAb digestion prior to ultrahigh-resolution Orbitrap MS analysis. Variation of the residence times (from 3 ms to 3 s) of antibody solutions in the membranes yields "bottom-up" (1-2 kDa) to "middle-down" (5-15 kDa) peptide sizes within less than 10 min. These peptides cover the entire sequences of Trastuzumab and a Waters antibody, and a proteolytic peptide comprised of 140 amino acids from the Waters antibody contains all three complementarity determining regions on the light chain. This work compares the performance of "bottom-up" (in-solution tryptic digestion), "top-down" (intact protein fragmentation), and "middle-down" (in-membrane digestion) analysis of an antibody light chain. Data from tandem MS show 99%, 55%, and 99% bond cleavage for "bottom-up", "top-down", and "middle-down" analyses, respectively. In-membrane digestion also facilitates detection of PTMs such as oxidation, deamidation, N-terminal pyroglutamic acid formation, and glycosylation. Compared to "bottom-up" and "top-down" approaches for antibody characterization, in-membrane digestion uses minimal sample preparation time, and this technique also yields high peptide and sequence coverage for the identification of PTMs.


Asunto(s)
Anticuerpos Monoclonales/química , Pepsina A/química , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Cromatografía Liquida , Membranas Artificiales , Datos de Secuencia Molecular , Proteolisis , Homología de Secuencia de Aminoácido
19.
Langmuir ; 31(43): 11790-9, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26442835

RESUMEN

Atom transfer radical polymerization of ionic monomers from membrane surfaces yields polyelectrolyte brushes that swell in water and repel oil droplets to resist fouling during filtration of oil-in-water emulsions. However, surfactant adsorption to polyelectrolyte brushes may overcome this fouling resistance. This work examines adsorption of cationic and anionic surfactants in polyanionic brushes and the effect of these surfactants on emulsion filtration. In situ ellipsometry with films on flat surfaces shows that brushes composed of poly(3-sulfopropyl methacrylate salts) (pSPMK) swell 280% in water and do not adsorb sodium dodecyl sulfate (SDS). pSPMK-modified microfiltration membranes reject >99.9% of the oil from SDS-stabilized submicron emulsions, and the specific flux through these modified membranes is comparable to that through NF270 nanofiltration membranes. Moreover, the brush-modified membranes show no decline in flux over a 12 h filtration, whereas the flux through NF270 membranes decreases by 98.7%. In contrast, pSPMK brushes adsorb large quantities of cetyltrimethylammonium bromide (CTAB), and at low chain densities the brushes collapse in the presence of this cationic surfactant. Filtration of CTAB-stabilized emulsions through pSPMK-modified membranes gives minimal oil rejection, presumably due to the brush collapse. Thus, the fouling resistance of polyelectrolyte brush-modified membranes clearly depends on the surfactant composition in a particular emulsion.

20.
Anal Chem ; 85(12): 5699-706, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23638980

RESUMEN

Selective enrichment of phosphopeptides prior to their analysis by mass spectrometry (MS) is vital for identifying protein phosphorylation sites involved in cellular regulation. This study describes modification of porous nylon substrates with TiO2 nanoparticles to create membranes that rapidly enrich phosphopeptides. Membranes with a 22-mm diameter bind 540 nmol of phosphoangiotensin and recover 70% of the phosphopeptides in mixtures with a 15-fold excess of nonphosphorylated proteins. Recovery is 90% for a pure phosphopeptide. Insertion of small membrane disks into HPLC fittings allows rapid enrichment from 5 mL of 1 fmol/µL phosphoprotein digests and concentration into small-volume (tens of microliters) eluates. The combination of membrane enrichment with tandem mass spectrometry reveals seven phosphorylation sites from in vivo phosphorylated tau (p-tau) protein, which is associated with Alzheimer's disease.


Asunto(s)
Membranas Artificiales , Fosfopéptidos/metabolismo , Titanio/metabolismo , Proteínas tau/metabolismo , Humanos , Fosfopéptidos/química , Fosforilación/fisiología , Titanio/química , Proteínas tau/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA