Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(14): e2205792119, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972435

RESUMEN

Increasing cropping system diversity has great potential to address environmental problems associated with modern agriculture, such as erosion, soil carbon loss, nutrient runoff, water pollution, and loss of biodiversity. As with other agricultural sciences, plant breeding has primarily been conducted in the context of dominant monoculture cropping systems, with little focus on multicrop systems. Multicrop systems have increased temporal and/or spatial diversity and include a diverse set of crops and practices. In order to support a transition to multicrop systems, plant breeders must shift their breeding programs and objectives to better represent more diverse systems, including diverse rotations, alternate-season crops, ecosystem service crops, and intercropping systems. The degree to which breeding methods need to change will depend on the cropping system context in question. Plant breeding alone, however, cannot drive adoption of multicrop systems. Alongside shifts in breeding approaches, changes are needed within broader research, private sector, and policy contexts. These changes include policies and investments that support a transition to multicrop systems, increased collaboration across disciplines to support cropping system development, and leadership from both the public and private sectors to develop and promote adoption of new cultivars.


Asunto(s)
Ecosistema , Fitomejoramiento , Agricultura , Suelo , Biodiversidad , Productos Agrícolas
2.
Plant Dis ; 106(7): 1793-1802, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35253491

RESUMEN

Downy mildew of spinach, caused by Peronospora effusa, is a major economic threat to both organic and conventional spinach production. Symptomatic spinach leaves are unmarketable and spinach with latent infections are problematic because symptoms can develop postharvest. Therefore, early detection methods for P. effusa could help producers identify infection before visible symptoms appear. Recombinase polymerase amplification (RPA) provides sensitive and specific detection of pathogen DNA and is a rapid, field-applicable method that does not require advanced technical knowledge or equipment-heavy DNA extraction. Here, we used comparative genomics to identify a unique region of the P. effusa mitochondrial genome to develop an RPA assay for the early detection of P. effusa in spinach leaves. In tandem, we established a TaqMan quantitative PCR (qPCR) assay and used this assay to validate the P. effusa specificity of the locus across Peronospora spp. and to compare assay performance. Neither the TaqMan qPCR nor the RPA showed cross reactivity with the closely related beet downy mildew pathogen, P. schachtii. TaqMan qPCR and RPA have detection thresholds of 100 and 900 fg of DNA, respectively. Both assays could detect P. effusa in presymptomatic leaves, with RPA-based detection occurring as early as 5 days before the appearance of symptoms and TaqMan qPCR-based detection occurring after 24 h of plant exposure to airborne spores. Implementation of the RPA detection method could provide real-time information for point-of-care management strategies at field sites.


Asunto(s)
Oomicetos , Peronospora , Peronospora/genética , Enfermedades de las Plantas , Recombinasas/genética , Spinacia oleracea/genética
3.
Mol Ecol ; 30(18): 4448-4465, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34217151

RESUMEN

Human induced environmental change may require rapid adaptation of plant populations and crops, but the genomic basis of environmental adaptation remain poorly understood. We analysed polymorphic loci from the perennial crop Medicago sativa (alfalfa or lucerne) and the annual legume model species M. truncatula to search for a common set of candidate genes that might contribute to adaptation to abiotic stress in both annual and perennial Medicago species. We identified a set of candidate genes of adaptation associated with environmental gradients along the distribution of the two Medicago species. Candidate genes for each species were detected in homologous genomic linkage blocks using genome-environment (GEA) and genome-phenotype association analyses. Hundreds of GEA candidate genes were species-specific, of these, 13.4% (M. sativa) and 24% (M. truncatula) were also significantly associated with phenotypic traits. A set of 168 GEA candidates were shared by both species, which was 25.4% more than expected by chance. When combined, they explained a high proportion of variance for certain phenotypic traits associated with adaptation. Genes with highly conserved functions dominated among the shared candidates and were enriched in gene ontology terms that have shown to play a central role in drought avoidance and tolerance mechanisms by means of cellular shape modifications and other functions associated with cell homeostasis. Our results point to the existence of a molecular basis of adaptation to abiotic stress in Medicago determined by highly conserved genes and gene functions. We discuss these results in light of the recently proposed omnigenic model of complex traits.


Asunto(s)
Medicago truncatula , Medicago , Aclimatación , Adaptación Fisiológica/genética , Humanos , Medicago/genética , Medicago sativa/genética , Medicago truncatula/genética , Suelo
4.
Am J Bot ; 106(9): 1219-1228, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31535720

RESUMEN

PREMISE: Although hybridization has played an important role in the evolution of many plant species, phylogenetic reconstructions that include hybridizing lineages have been historically constrained by the available models and data. Restriction-site-associated DNA sequencing (RADseq) has been a popular sequencing technique for the reconstruction of hybridization in the next-generation sequencing era. However, the utility of RADseq for the reconstruction of complex evolutionary networks has not been thoroughly investigated. Conflicting phylogenetic relationships in the genus Medicago have been mainly attributed to hybridization, but the specific hybrid origins of taxa have not been yet clarified. METHODS: We obtained new molecular data from diploid species of Medicago section Medicago using single-digest RADseq to reconstruct evolutionary networks from gene trees, an approach that is computationally tractable with data sets that include several species and complex hybridization patterns. RESULTS: Our analyses revealed that assembly filters to exclusively select a small set of loci with high phylogenetic information led to the most-divergent network topologies. Conversely, alternative clustering thresholds or filters on the number of samples per locus had a lower impact on networks. A strong hybridization signal was detected for M. carstiensis and M. cretacea, while signals were less clear for M. rugosa, M. rhodopea, M. suffruticosa, M. marina, M. scutellata, and M. sativa. CONCLUSIONS: Complex network reconstructions from RADseq gene trees were not robust under variations of the assembly parameters and filters. But when the most-divergent networks were discarded, all remaining analyses consistently supported a hybrid origin for M. carstiensis and M. cretacea.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Medicago , Secuencia de Bases , Filogenia , Análisis de Secuencia de ADN
5.
BMC Evol Biol ; 18(1): 91, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29898656

RESUMEN

BACKGROUND: Advances in genomic technologies have expanded our ability to accurately and exhaustively detect natural genomic variants that can be applied in crop improvement and to increase our knowledge of plant evolution and adaptation. Switchgrass (Panicum virgatum L.), an allotetraploid (2n = 4× = 36) perennial C4 grass (Poaceae family) native to North America and a feedstock crop for cellulosic biofuel production, has a large potential for genetic improvement due to its high genotypic and phenotypic variation. In this study, we analyzed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes belonging to 36 accessions for 12 genes putatively involved in biomass production to investigate signatures of selection that could have led to ecotype differentiation and to population adaptation to geographic zones. RESULTS: A total of 11,682 SNPs were mined from ~ 15 Gb of sequence data, out of which 251 SNPs were retained after filtering. Population structure analysis largely grouped upland accessions into one subpopulation and lowland accessions into two additional subpopulations. The most frequent SNPs were in homozygous state within accessions. Sixty percent of the exonic SNPs were non-synonymous and, of these, 45% led to non-conservative amino acid changes. The non-conservative SNPs were largely in linkage disequilibrium with one haplotype being predominantly present in upland accessions while the other haplotype was commonly present in lowland accessions. Tajima's test of neutrality indicated that PHYB, a gene involved in photoperiod response, was under positive selection in the switchgrass population. PHYB carried a SNP leading to a non-conservative amino acid change in the PAS domain, a region that acts as a sensor for light and oxygen in signal transduction. CONCLUSIONS: Several non-conservative SNPs in genes potentially involved in plant architecture and adaptation have been identified and led to population structure and genetic differentiation of ecotypes in switchgrass. We suggest here that PHYB is a key gene involved in switchgrass natural selection. Further analyses are needed to determine whether any of the non-conservative SNPs identified play a role in the differential adaptation of upland and lowland switchgrass.


Asunto(s)
Adaptación Fisiológica/genética , Genes de Plantas , Variación Genética , Panicum/anatomía & histología , Panicum/genética , Secuencia de Bases , Biomasa , Mapeo Cromosómico , Flujo Génico , Genética de Población , Mutación/genética , Panicum/fisiología , Filogeografía , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Estados Unidos
6.
Theor Appl Genet ; 130(2): 261-268, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27662844

RESUMEN

KEY MESSAGE: We attempted to identify genomic regions controlling forage yield and nutritive value in alfalfa. Several candidate genes and associated genetic markers were identified that could potentially be useful for alfalfa breeding to more efficiently develop improved cultivars. Alfalfa is one of the most widely cultivated forage legumes worldwide and improving alfalfa forage yield and nutritive value is a major global breeding goal. Genotyping-by-sequencing (GBS) provides cost-effective molecular marker genotyping for genome-wide association studies (GWAS). Using more than 15,000 genome-wide single nucleotide polymorphisms (SNP) identified from GBS, we conducted a GWAS to investigate forage yield and nutritive value-related traits. We have detected a number of associations for all the traits evaluated and a number of associations detected were located on the Medicago truncatula genome. The SNP in a coding region of a cell wall biosynthesis gene was associated with several cell wall-related traits, and we suggest that it may be the causative polymorphism. Two other SNPs residing in meristematic development and early growth genes were found to associate with the total biomass yield. None of the SNPs associated with regrowth after harvest or with spring regrowth were mapped to the M. truncatula genome, possibly reflecting the fact that M. truncatula is an annual species related to alfalfa that typically has limited ability to regrow. The alleles we identify with the major impact on forage yield and nutritive value can be rapidly incorporated into our breeding program.


Asunto(s)
Alimentación Animal , Genoma de Planta , Medicago sativa/genética , Valor Nutritivo , Mapeo Cromosómico , ADN de Plantas/genética , Estudios de Asociación Genética , Marcadores Genéticos , Genética de Población , Técnicas de Genotipaje , Desequilibrio de Ligamiento , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
7.
BMC Genomics ; 16: 1020, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26626170

RESUMEN

BACKGROUND: Genomic selection based on genotyping-by-sequencing (GBS) data could accelerate alfalfa yield gains, if it displayed moderate ability to predict parent breeding values. Its interest would be enhanced by predicting ability also for germplasm/reference populations other than those for which it was defined. Predicting accuracy may be influenced by statistical models, SNP calling procedures and missing data imputation strategies. RESULTS: Landrace and variety material from two genetically-contrasting reference populations, i.e., 124 elite genotypes adapted to the Po Valley (sub-continental climate; PV population) and 154 genotypes adapted to Mediterranean-climate environments (Me population), were genotyped by GBS and phenotyped in separate environments for dry matter yield of their dense-planted half-sib progenies. Both populations showed no sub-population genetic structure. Predictive accuracy was higher by joint rather than separate SNP calling for the two data sets, and using random forest imputation of missing data. Highest accuracy was obtained using Support Vector Regression (SVR) for PV, and Ridge Regression BLUP and SVR for Me germplasm. Bayesian methods (Bayes A, Bayes B and Bayesian Lasso) tended to be less accurate. Random Forest Regression was the least accurate model. Accuracy attained about 0.35 for Me in the range of 0.30-0.50 missing data, and 0.32 for PV at 0.50 missing data, using at least 10,000 SNP markers. Cross-population predictions based on a smaller subset of common SNPs implied a relative loss of accuracy of about 25% for Me and 30% for PV. Genome-wide association analyses based on large subsets of M. truncatula-aligned markers revealed many SNPs with modest association with yield, and some genome areas hosting putative QTLs. A comparison of genomic vs. conventional selection for parent breeding value assuming 1-year vs. 5-year selection cycles, respectively, indicated over three-fold greater predicted yield gain per unit time for genomic selection. CONCLUSIONS: Genomic selection for alfalfa yield is promising, based on its moderate prediction accuracy, moderate value of cross-population predictions, and lack of sub-population structure. There is limited scope for searching individual QTLs with overwhelming effect on yield. Some of our results can contribute to better design of genomic selection experiments for alfalfa and other crops with similar mating systems.


Asunto(s)
Biomasa , Genética de Población , Genoma de Planta , Medicago sativa/genética , Selección Genética , Cruzamiento , Estudio de Asociación del Genoma Completo , Genotipo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados
8.
BMC Genomics ; 13: 568, 2012 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-23107476

RESUMEN

BACKGROUND: Alfalfa, a perennial, outcrossing species, is a widely planted forage legume producing highly nutritious biomass. Currently, improvement of cultivated alfalfa mainly relies on recurrent phenotypic selection. Marker assisted breeding strategies can enhance alfalfa improvement efforts, particularly if many genome-wide markers are available. Transcriptome sequencing enables efficient high-throughput discovery of single nucleotide polymorphism (SNP) markers for a complex polyploid species. RESULT: The transcriptomes of 27 alfalfa genotypes, including elite breeding genotypes, parents of mapping populations, and unimproved wild genotypes, were sequenced using an Illumina Genome Analyzer IIx. De novo assembly of quality-filtered 72-bp reads generated 25,183 contigs with a total length of 26.8 Mbp and an average length of 1,065 bp, with an average read depth of 55.9-fold for each genotype. Overall, 21,954 (87.2%) of the 25,183 contigs represented 14,878 unique protein accessions. Gene ontology (GO) analysis suggested that a broad diversity of genes was represented in the resulting sequences. The realignment of individual reads to the contigs enabled the detection of 872,384 SNPs and 31,760 InDels. High resolution melting (HRM) analysis was used to validate 91% of 192 putative SNPs identified by sequencing. Both allelic variants at about 95% of SNP sites identified among five wild, unimproved genotypes are still present in cultivated alfalfa, and all four US breeding programs also contain a high proportion of these SNPs. Thus, little evidence exists among this dataset for loss of significant DNA sequence diversity from either domestication or breeding of alfalfa. Structure analysis indicated that individuals from the subspecies falcata, the diploid subspecies caerulea, and the tetraploid subspecies sativa (cultivated tetraploid alfalfa) were clearly separated. CONCLUSION: We used transcriptome sequencing to discover large numbers of SNPs segregating in elite breeding populations of alfalfa. Little loss of SNP diversity was evident between unimproved and elite alfalfa germplasm. The EST and SNP markers generated from this study are publicly available at the Legume Information System ( http://medsa.comparative-legumes.org/) and can contribute to future alfalfa research and breeding applications.


Asunto(s)
Genes de Plantas , Marcadores Genéticos , Medicago sativa/genética , Polimorfismo de Nucleótido Simple , Transcriptoma , Alelos , Cruzamiento , Genotipo , Mutación INDEL , Medicago sativa/clasificación , Desnaturalización de Ácido Nucleico , Filogenia , Ploidias , Análisis de Componente Principal , Análisis de Secuencia de ADN
9.
Ann Bot ; 110(6): 1317-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22378838

RESUMEN

BACKGROUND: Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. SCOPE: Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is 'Roundup Ready' (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.


Asunto(s)
Cruzamiento/legislación & jurisprudencia , Fabaceae/genética , Ingeniería Genética/legislación & jurisprudencia , Poaceae/genética , Flujo Génico , Plantas Modificadas Genéticamente , Polen/genética , Transgenes
10.
Genetica ; 139(7): 933-48, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21786028

RESUMEN

Switchgrass (Panicum virgatum), a central and Eastern USA native, is highly valued as a component in tallgrass prairie and savanna restoration and conservation projects and a potential bioenergy feedstock. The purpose of this study was to identify regional diversity, gene pools, and centers-of-diversity of switchgrass to gain an understanding of its post-glacial evolution and to identify both the geographic range and potential overlap between functional gene pools. We sampled a total of 384 genotypes from 49 accessions that included the three main taxonomic groups of switchgrass (lowland 4x, upland 4x, and upland 8x) along with one accession possessing an intermediate phenotype. We identified primary centers of diversity for switchgrass in the eastern and western Gulf Coast regions. Migration, drift, and selection have led to adaptive radiation in switchgrass, creating regional gene pools within each of the main taxa. We estimate that both upland-lowland divergence and 4x-to-8x polyploidization within switchgrass began approximately 1.5-1 M ybp and that subsequent ice age cycles have resulted in gene flow between ecotype lineages and between ploidy levels. Gene flow has resulted in "hot spots" of genetic diversity in the southeastern USA and along the Atlantic Seaboard.


Asunto(s)
Evolución Biológica , ADN de Cloroplastos/genética , Variación Genética/genética , Repeticiones de Minisatélite/genética , Panicum/genética , Teorema de Bayes , ADN de Cloroplastos/química , Ecotipo , Flujo Génico , Pool de Genes , Flujo Genético , Sitios Genéticos/genética , Marcadores Genéticos/genética , Estructuras Genéticas , Genotipo , Panicum/clasificación , Filogeografía , Ploidias , Selección Genética , Análisis de Secuencia de ADN , Factores de Tiempo , Estados Unidos
11.
Theor Appl Genet ; 123(4): 667-79, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21625992

RESUMEN

Segregation distortion (SD) is often observed in plant populations; its presence can affect mapping and breeding applications. To investigate the prevalence of SD in diploid alfalfa (Medicago sativa L.), we developed two unrelated segregating F(1) populations and one F(2) population. We genotyped all populations with SSR markers and assessed SD at each locus in each population. The three maps were syntenic and largely colinear with the Medicago truncatula genome sequence. We found genotypic SD for 24 and 34% of markers in the F(1) populations and 68% of markers in the F(2) population; distorted markers were identified on every linkage group. The smaller percentage of genotypic SD in the F(1) populations could be because they were non-inbred and/or due to non-fully informative markers. For the F(2) population, 60 of 90 mapped markers were distorted, and they clustered into eight segregation distortion regions (SDR). Most SDR identified in the F(1) populations were also identified in the F(2) population. Genotypic SD was primarily due to zygotic rather than allelic distortion, suggesting zygotic not gametic selection is the main cause of SD. On the F(2) linkage map, distorted markers in all SDR except two showed heterozygote excess. The severe SD in the F(2) population likely biased genetic distances among markers and possibly also marker ordering and could affect QTL mapping of agronomic traits. To reduce the effects of SD and non-fully informative markers, we suggest constructing linkage maps and conducting QTL mapping in advanced generation populations.


Asunto(s)
Segregación Cromosómica , Genoma de Planta , Medicago sativa/genética , Alelos , Cruzamiento , Mapeo Cromosómico , Diploidia , Genética de Población , Genotipo , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Sitios de Carácter Cuantitativo
12.
Am J Bot ; 98(10): 1633-46, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21965136

RESUMEN

PREMISE OF THE STUDY: Although there is growing evidence that autopolyploidy is a widespread and important evolutionary phenomenon, it has received less attention than allopolyploidy. Medicago sativa comprises several diploid and autopolyploid taxa, including autotetraploid cultivated alfalfa, and affords an opportunity to elucidate the evolutionary history of a morphologically and genetically complex autopolyploid system. METHODS: Phylogenies and haplotype networks were constructed from two chloroplast noncoding regions (rpl20-rps12 and trnS-trnG spacers) across seven diploid and polyploid infraspecific taxa of M. sativa and five additional closely related Medicago species, and genetic differentiation was estimated. KEY RESULTS: The two most prominent M. sativa autopolyploids have contrasting evolutionary histories. Chloroplast data support a simple autopolyploid origin of subsp. sativa (alfalfa) from diploid subsp. caerulea, from which it is distinguishable in several quantitative characters. In contrast, morphologically identical diploid and autopolyploid cytotypes of subsp. falcata were found to possess very different chloroplast haplotypes, suggesting past introgression from M. prostrata into the polyploid. Despite the presence of hybrids between tetraploid subspecies falcata and sativa, there was little evidence of introgression of chloroplast genomes from either subspecies into the other. CONCLUSIONS: Autopolyploid evolution in M. sativa is complicated and has followed very different paths in different subspecific taxa. The potential exists for gene flow in virtually all combinations of subspecies both within and between ploidies, yet despite the existence of hybrids, morphologically and genetically distinctive subspecies persist.


Asunto(s)
Evolución Biológica , Medicago sativa/genética , Poliploidía , Secuencia de Bases , Cloroplastos/genética , ADN de Plantas/genética , Flujo Génico/genética , Haplotipos/genética , Filogenia
13.
Nutr Cancer ; 62(3): 351-61, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20358473

RESUMEN

Transgenic alfalfa (Medicago sativa L.), which accumulated resveratrol-glucoside (RG), was incorporated into diets and fed to female, 6-wk-old CF-1 mice for 5 wk. Mice fed diets containing transgenic alfalfa with supplemented alpha -galactosidase had significantly fewer azoxymethane (AOM)-induced aberrant crypt foci (ACF) in their colon relative to mice fed the transgenic alfalfa diets without added alpha -galactosidase (P = 0.02). Resveratrol-aglycone (Rag) was detected in the colon of 100% of mice fed transgenic alfalfa diets with supplemented alpha -galactosidase and in 60% of mice fed transgenic alfalfa without alpha -galactosidase (P < 0.05). Colonic concentrations of Rag (< 0.5 nmol/g tissue) in mice fed transgenic alfalfa with alpha -galactosidase (0.22 +/- 0.18 nmol/g tissue) tended to be higher than in animals fed diets without alpha -galactosidase (0.1 +/- 0.08 nmol/g tissue; P = 0.09). The use of N-(Bn-butyl)-deoxygalactonojirimycin, an inhibitor of lactase-phlorizin hydrolase (LPH), in transport studies with everted jejunal sacs from CF-1 mice (N = 8) suggested that LPH is involved in the intestinal deglycosylation of RG. Our collective findings suggest that RG from transgenic alfalfa is metabolized and absorbed in the upper intestine and does not reach the colon in sufficient amounts to inhibit ACF.


Asunto(s)
Neoplasias del Colon/prevención & control , Glucósidos/uso terapéutico , Medicago sativa/genética , Plantas Modificadas Genéticamente/metabolismo , Lesiones Precancerosas/prevención & control , Estilbenos/uso terapéutico , Animales , Azoximetano , Peso Corporal , Cromatografía Líquida de Alta Presión , Ingestión de Alimentos , Femenino , Lactasa-Florizina Hidrolasa/metabolismo , Medicago sativa/química , Ratones , Plantas Modificadas Genéticamente/química , Resveratrol , Estilbenos/metabolismo
14.
BMC Plant Biol ; 9: 107, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19678936

RESUMEN

BACKGROUND: Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. RESULTS: We tested these hypotheses in three Medicago sativa (alfalfa) genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS) and robust multi-array average (RMA) algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (approximately 300 genes) showed nonadditive expression compared to only 0.5% (16 genes) in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. CONCLUSION: The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass yield in alfalfa.


Asunto(s)
Perfilación de la Expresión Génica , Genoma de Planta , Vigor Híbrido , Medicago sativa/genética , Quimera/genética , Hibridación Genómica Comparativa , ADN de Plantas/genética , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
G3 (Bethesda) ; 8(2): 461-468, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255116

RESUMEN

Autumn dormancy in alfalfa (Medicago sativa) is associated with agronomically important traits including regrowth rate, maturity, and winter survival. Historical recurrent selection experiments have been able to manipulate the dormancy response. We hypothesized that artificial selection for dormancy phenotypes in these experiments had altered allele frequencies of dormancy-related genes. Here, we follow this hypothesis and analyze allele frequency changes using genome-wide polymorphisms in the pre- and postselection populations from one historical selection experiment. We screened the nondormant cultivar CUF 101 and populations developed by three cycles of recurrent phenotypic selection for taller and shorter plants in autumn with markers derived from genotyping-by-sequencing (GBS). We validated the robustness of our GBS-derived allele frequency estimates using an empirical approach. Our results suggest that selection mapping is a powerful means of identifying genomic regions associated with traits, and that it can be exploited to provide regions on which to focus further mapping and cloning projects.


Asunto(s)
Mapeo Cromosómico/métodos , Genes de Plantas/genética , Genoma de Planta/genética , Latencia en las Plantas/genética , Estaciones del Año , Regulación de la Expresión Génica de las Plantas , Frecuencia de los Genes , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Selección Genética , Análisis de Secuencia de ADN
16.
Plant Genome ; 11(3)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30512032

RESUMEN

Switchgrass ( L.) is a promising herbaceous energy crop, but further gains in biomass yield and quality must be achieved to enable a viable bioenergy industry. Developing DNA markers can contribute to such progress, but depiction of genetic bases should be reliable, involving simple additive marker effects and also interactions with genetic backgrounds (e.g., ecotypes) or synergies with other markers. We analyzed plant height, C content, N content, and mineral concentration in a diverse panel consisting of 512 genotypes of upland and lowland ecotypes. We performed association analyses based on exome capture sequencing and tested 439,170 markers for marginal effects, 83,290 markers for marker × ecotype interactions, and up to 311,445 marker pairs for pairwise interactions. Analyses of pairwise interactions focused on subsets of marker pairs preselected on the basis of marginal marker effects, gene ontology annotation, and pairwise marker associations. Our tests identified 12 significant effects. Homology and gene expression information corroborated seven effects and indicated plausible causal pathways: flowering time and lignin synthesis for plant height; plant growth and senescence for C content and mineral concentration. Four pairwise interactions were detected, including three interactions preselected on the basis of pairwise marker correlations. Furthermore, a marker × ecotype interaction and a pairwise interaction were confirmed in an independent switchgrass panel. Our analyses identified reliable candidate variants for important bioenergy traits. Moreover, they exemplified the importance of interactive effects for depicting genetic bases and illustrated the usefulness of preselecting marker pairs for identifying pairwise marker interactions in association studies.


Asunto(s)
Genes de Plantas , Variación Genética , Panicum/genética , Biocombustibles , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Panicum/metabolismo , Fenotipo
17.
Plant Genome ; 11(1)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29505643

RESUMEN

Switchgrass ( is a perennial native North American grass present in two ecotypes: upland, found primarily in the northern range of switchgrass habitats, and lowland, found largely in the southern reaches of switchgrass habitats. Previous studies focused on a diversity panel of primarily northern switchgrass, so to expand our knowledge of genetic diversity in a broader set of North American switchgrass, exome capture sequence data were generated for 632 additional, primarily lowland individuals. In total, over 37 million single nucleotide polymorphisms (SNPs) were identified and a set of 1.9 million high-confidence SNPs were obtained from 1169 individuals from 140 populations (67 upland, 65 lowland, 8 admixed) were used in downstream analyses of genetic diversity and population structure. Seven separate population groups were identified with moderate genetic differentiation [mean fixation index (Fst) estimate of 0.06] between the lowland and the upland populations. Ecotype-specific and population-specific SNPs were identified for use in germplasm evaluations. Relative to rice ( L.), maize ( L.), soybean [ (L.) Merr.], and Gaertn., analyses of nucleotide diversity revealed a high degree of genetic diversity (0.0135) across all individuals, consistent with the outcrossing mode of reproduction and the polyploidy of switchgrass. This study supports the hypothesis that repeated glaciation events, ploidy barriers, and restricted gene flow caused by flowering time differences have resulted in distinct gene pools across ecotypes and geographic regions. These data provide a resource to associate alleles with traits of interest for forage, restoration, and biofuel feedstock efforts in switchgrass.


Asunto(s)
Variación Genética , Genética de Población , Panicum/genética , Ecotipo , Exoma , Flujo Génico , Pool de Genes , Ploidias , Polimorfismo de Nucleótido Simple , Estados Unidos
18.
PLoS One ; 12(1): e0169234, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28068350

RESUMEN

Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits (by genomic selection or MAS) and forage yield.


Asunto(s)
Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Medicago sativa/genética , Carácter Cuantitativo Heredable , Selección Genética , Marcadores Genéticos , Genoma de Planta , Genómica/métodos , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
19.
Plant Genome ; 10(2)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28724076

RESUMEN

Terminal drought is the main stress that limits pea ( L.) grain yield in Mediterranean-climate regions. This study provides an unprecedented assessment of the predictive ability of genomic selection (GS) for grain yield under severe terminal drought using genotyping-by-sequencing (GBS) data. Additional aims were to assess the GS predictive ability for different GBS data quality filters and GS models, comparing intrapopulation with interpopulation GS predictive ability and to perform genome-wide association (GWAS) studies. The yield and onset of flowering of 315 lines from three recombinant inbred line (RIL) populations issued by connected crosses between three elite cultivars were assessed under a field rainout shelter. We defined an adjusted yield, which is associated with intrinsic drought tolerance, as the yield deviation from the value expected as a function of onset of flowering (which correlated negatively with grain yield). Total polymorphic markers ranged from approximately 100 (minimum of eight reads per locus, maximum 10% genotype missing data) to over 7500 markers (minimum of four reads, maximum 50% missing rate). Best predictions were provided by Bayesian Lasso (BL) or ridge regression best linear unbiased prediction (rrBLUP), rather than support vector regression (SVR) models, with at least 400-500 markers. Intrapopulation GS predictive ability exceeded 0.5 for yield and onset of flowering in all populations and approached 0.4 for the adjusted yield of a population with high trait variation. Genomic selection was preferable to phenotypic selection in terms of predicted yield gains. Interpopulation GS predictive ability varied largely depending on the pair of populations. GWAS revealed extensive colocalization of markers associated with high yield and early flowering and suggested that they are concentrated in a few genomic regions.


Asunto(s)
Sequías , Pisum sativum/genética , Selección Genética , Teorema de Bayes , Cruzamientos Genéticos , Flores/crecimiento & desarrollo , Marcadores Genéticos , Genoma de Planta , Estudio de Asociación del Genoma Completo , Pisum sativum/crecimiento & desarrollo , Pisum sativum/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Estrés Fisiológico , Máquina de Vectores de Soporte
20.
Plant Genome ; 9(2)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27898838

RESUMEN

Cultivar registration agencies typically require morphophysiological trait-based distinctness of candidate cultivars. This requirement is difficult to achieve for cultivars of major perennial forages because of their genetic structure and ever-increasing number of registered material, leading to possible rejection of agronomically valuable cultivars. This study aimed to explore the value of molecular markers applied to replicated bulked plants (three bulks of 100 independent plants each per cultivar) to assess alfalfa ( L. subsp. ) cultivar distinctness. We compared genotyping-by-sequencing information based on 2902 polymorphic single-nucleotide polymorphism (SNP) markers (>30 reads per DNA sample) with morphophysiological information based on 11 traits and with simple-sequence repeat (SSR) marker information from 41 polymorphic markers for their ability to distinguish 11 alfalfa landraces representative of the germplasm from northern Italy. Three molecular criteria, one based on cultivar differences for individual SSR bands and two based on overall SNP marker variation assessed either by statistically significant cultivar differences on principal component axes or discriminant analysis, distinctly outperformed the morphophysiological criterion. Combining the morphophysiological criterion with either molecular marker method increased discrimination among cultivars, since morphophysiological diversity was unrelated to SSR marker-based diversity ( = 0.04) and poorly related to SNP marker-based diversity ( = 0.23, < 0.15). The criterion based on statistically significant SNP allele frequency differences was less discriminating than morphophysiological variation. Marker-based distinctness, which can be assessed at low cost and without interactions with testing conditions, could validly substitute for (or complement) morphophysiological distinctness in alfalfa cultivar registration schemes. It also has interest in sui generis registration systems aimed at marketing alfalfa landraces.


Asunto(s)
Variación Genética , Medicago sativa/anatomía & histología , Medicago sativa/genética , Frecuencia de los Genes/genética , Genotipo , Italia , Medicago sativa/clasificación , Repeticiones de Microsatélite/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA