Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 601(7893): 422-427, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987224

RESUMEN

Maternal morbidity and mortality continue to rise, and pre-eclampsia is a major driver of this burden1. Yet the ability to assess underlying pathophysiology before clinical presentation to enable identification of pregnancies at risk remains elusive. Here we demonstrate the ability of plasma cell-free RNA (cfRNA) to reveal patterns of normal pregnancy progression and determine the risk of developing pre-eclampsia months before clinical presentation. Our results centre on comprehensive transcriptome data from eight independent prospectively collected cohorts comprising 1,840 racially diverse pregnancies and retrospective analysis of 2,539 banked plasma samples. The pre-eclampsia data include 524 samples (72 cases and 452 non-cases) from two diverse independent cohorts collected 14.5 weeks (s.d., 4.5 weeks) before delivery. We show that cfRNA signatures from a single blood draw can track pregnancy progression at the placental, maternal and fetal levels and can robustly predict pre-eclampsia, with a sensitivity of 75% and a positive predictive value of 32.3% (s.d., 3%), which is superior to the state-of-the-art method2. cfRNA signatures of normal pregnancy progression and pre-eclampsia are independent of clinical factors, such as maternal age, body mass index and race, which cumulatively account for less than 1% of model variance. Further, the cfRNA signature for pre-eclampsia contains gene features linked to biological processes implicated in the underlying pathophysiology of pre-eclampsia.


Asunto(s)
Ácidos Nucleicos Libres de Células , Preeclampsia , ARN , Ácidos Nucleicos Libres de Células/sangre , Femenino , Humanos , Preeclampsia/diagnóstico , Preeclampsia/genética , Valor Predictivo de las Pruebas , Embarazo , ARN/sangre , Estudios Retrospectivos , Sensibilidad y Especificidad
2.
Am J Obstet Gynecol ; 227(1): 72.e1-72.e16, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35398029

RESUMEN

BACKGROUND: Spontaneous preterm birth remains the main driver of childhood morbidity and mortality. Because of an incomplete understanding of the molecular pathways that result in spontaneous preterm birth, accurate predictive markers and target therapeutics remain elusive. OBJECTIVE: This study sought to determine if a cell-free RNA profile could reveal a molecular signature in maternal blood months before the onset of spontaneous preterm birth. STUDY DESIGN: Maternal samples (n=242) were obtained from a prospective cohort of individuals with a singleton pregnancy across 4 clinical sites at 12-24 weeks (nested case-control; n=46 spontaneous preterm birth <35 weeks and n=194 term controls). Plasma was processed via a next-generation sequencing pipeline for cell-free RNA using the Mirvie RNA platform. Transcripts that were differentially expressed in next-generation sequencing cases and controls were identified. Enriched pathways were identified in the Reactome database using overrepresentation analysis. RESULTS: Twenty five transcripts associated with an increased risk of spontaneous preterm birth were identified. A logistic regression model was developed using these transcripts to predict spontaneous preterm birth with an area under the curve =0.80 (95% confidence interval, 0.72-0.87) (sensitivity=0.76, specificity=0.72). The gene discovery and model were validated through leave-one-out cross-validation. A unique set of 39 genes was identified from cases of very early spontaneous preterm birth (<25 weeks, n=14 cases with time to delivery of 2.5±1.8 weeks); a logistic regression classifier on the basis of these genes yielded an area under the curve=0.76 (95% confidence interval, 0.63-0.87) in leave-one-out cross validation. Pathway analysis for the transcripts associated with spontaneous preterm birth revealed enrichment of genes related to collagen or the extracellular matrix in those who ultimately had a spontaneous preterm birth at <35 weeks. Enrichment for genes in insulin-like growth factor transport and amino acid metabolism pathways were associated with spontaneous preterm birth at <25 weeks. CONCLUSION: Second trimester cell-free RNA profiles in maternal blood provide a noninvasive window to future occurrence of spontaneous preterm birth. The systemic finding of changes in collagen and extracellular matrix pathways may serve to identify individuals at risk for premature cervical remodeling, with growth factor and metabolic pathways implicated more often in very early spontaneous preterm birth. The use of cell-free RNA profiles has the potential to accurately identify those at risk for spontaneous preterm birth by revealing the underlying pathophysiology, creating an opportunity for more targeted therapeutics and effective interventions.


Asunto(s)
Ácidos Nucleicos Libres de Células , Nacimiento Prematuro , Ácidos Nucleicos Libres de Células/genética , Cuello del Útero , Femenino , Humanos , Recién Nacido , Embarazo , Nacimiento Prematuro/genética , Estudios Prospectivos , ARN
3.
Genome Res ; 15(2): 269-75, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15687290

RESUMEN

Large-scale genetic studies are highly dependent on efficient and scalable multiplex SNP assays. In this study, we report the development of Molecular Inversion Probe technology with four-color, single array detection, applied to large-scale genotyping of up to 12,000 SNPs per reaction. While generating 38,429 SNP assays using this technology in a population of 30 trios from the Centre d'Etude Polymorphisme Humain family panel as part of the International HapMap project, we established SNP conversion rates of approximately 90% with concordance rates >99.6% and completeness levels >98% for assays multiplexed up to 12,000plex levels. Furthermore, these individual metrics can be "traded off" and, by sacrificing a small fraction of the conversion rate, the accuracy can be increased to very high levels. No loss of performance is seen when scaling from 6,000plex to 12,000plex assays, strongly validating the ability of the technology to suppress cross-reactivity at high multiplex levels. The results of this study demonstrate the suitability of this technology for comprehensive association studies that use targeted SNPs in indirect linkage disequilibrium studies or that directly screen for causative mutations.


Asunto(s)
Inversión Cromosómica/genética , Técnicas de Sonda Molecular/tendencias , Polimorfismo de Nucleótido Simple/genética , Inversión Cromosómica/estadística & datos numéricos , Análisis por Conglomerados , Sondas de ADN/genética , Perfilación de la Expresión Génica , Genoma Humano , Genotipo , Humanos , Técnicas de Sonda Molecular/normas , Técnicas de Sonda Molecular/estadística & datos numéricos , Sondas Moleculares/genética , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA