Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Microsc ; 295(3): 243-256, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38594963

RESUMEN

We present a comparison of common electron microscopy sample preparation methods for studying crystallisation processes from solution using both scanning and transmission electron microscopy (SEM and TEM). We focus on two widely studied inorganic systems: calcium sulphate, gypsum (CaSO4·2H2O) and calcium carbonate (CaCO3). We find significant differences in crystallisation kinetics and polymorph selection between the different sample preparation methods, which indicate that drying and chemical quenching can induce severe artefacts that are capable of masking the true native state of the crystallising solution. Overall, these results highlight the importance of cryogenic (cryo)-quenching crystallising solutions and the use of full cryo-TEM as the most reliable method for studying the early stages of crystallisation.

2.
Langmuir ; 39(1): 556-562, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36573036

RESUMEN

The capacity for crystals to adsorb elements and molecules is a function of the structures of their crystal faces and the relative proportions of those faces. More importantly, this study shows that the surface structure of crystal faces is affected by their surface roughness and is the dominant factor controlling the absorption site density. In a continuation of the study of synthetic goethites with varying single crystal size distributions, two more synthetic goethites with intermediate sizes were analyzed by Brunauer-Emmett-Teller (BET) and atomic-resolution scanning transmission electron microscopy (STEM) to determine the effects of crystal size on their shape, atomic-scale surface roughness, and ultimately on their total surface site density. Results show that surface roughness scales directly with the size [or inversely with the specific surface area (SSA)] of synthetic goethites in the SSA range of 40-75 m2/g. This surface roughness, in turn, increases the total site density over ideal atomically smooth crystals. The total site density of synthetic goethite increases from a combination of decreasing crystal length/width ratio and increasing surface roughness.

3.
Environ Res ; 239(Pt 2): 117347, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37821062

RESUMEN

Controlling the nanoscale synthesis of semiconductor TiO2 on a fixed substrate has fascinated the curiosity of academics for decades. Synthesis development is required to give an easy-to-control technique and parameters for TiO2 manufacture, leading to advancements in prospective applications such as photocatalysts. This study, mixed-phase TiO2(B)/other titania thin films were synthesized on a fused quartz substrate utilizing a modified Chemical vapor depodition involving alkali-metal ions (Li+, Na+, and K+) solution pre-treatment. It was discovered that different cations promote dramatically varied phases and compositions of thin films. The films had a columnar structure with agglomerated irregular-shaped particles with a mean thickness of 800-2000 nm. Na+ ions can promote TiO2(B) more effectively than K+ ions, however Li+ ions cannot synthesize TiO2(B). The amounts of TiO2(B) in thin films increase with increasing alkali metal (K+ and Na+) concentration. According to experimental and DFT calculations, the hypothesized TiO2(B) production mechanism happened via the meta-stable intermediate alkaline titanate transformation caused by alkali-metal ion diffusion. The mixed phase of TiO2(B) and anatase TiO2 on the fixed substrate (1 × 1 cm2) obtained from Na+ pre-treated procedures showed significant photocatalytic activity for the degradation of methylene blue. K2Ti6O12, Li2TiO3, Rutile TiO2, and Brookite TiO2 phase formations produced by K+ and Li + pretreatment are low activity photocatalysts. Photocatalytic activities were more prevalent in NaOH pre-treated samples (59.1% dye degradation) than in LiOH and KOH pre-treated samples (49.6% and 34.2%, respectively). This revealed that our developed CVD might generate good photocatalytic thin films of mixed-phase TiO2(B)/anatase TiO2 on any substrate, accelerating progress in future applications.


Asunto(s)
Enfermedades Cardiovasculares , Metales Alcalinos , Humanos , Compuestos Azo , Catálisis , Cationes , Litio , Álcalis
4.
Langmuir ; 38(18): 5372-5380, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35471829

RESUMEN

The interaction of amorphous silica nanoparticles with phospholipid monolayers and bilayers has received a great deal of interest in recent years and is of importance for assessing potential cellular toxicity of such species, whether natural or synthesized for the purpose of nanomedical drug delivery and other applications. This present communication studies the rate of silica nanoparticle adsorption on to phospholipid monolayers in order to extract a heterogeneous rate constant from the data. This rate constant relates to the initial rate of growth of an adsorbed layer of nanoparticles as SiO2 on a unit area of the monolayer surface from unit concentration in dispersion. Experiments were carried out using the system of dioleoyl phosphatidylcholine (DOPC) monolayers deposited on Pt/Hg electrodes in a flow cell. Additional studies were carried out on the interaction of soluble silica with these layers. Results show that the rate constant is effectively constant with respect to silica nanoparticle size. This is interpreted as indicating that the interaction of hydrated SiO2 molecular species with phospholipid polar groups is the molecular initiating event (MIE) defined as the initial interaction of the silica particle surface with the phospholipid layer surface promoting the adsorption of silica nanoparticles on DOPC. The conclusion is consistent with the observed significant interaction of soluble SiO2 with the DOPC layer and the established properties of the silica-water interface.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Adsorción , Fosfolípidos , Propiedades de Superficie , Agua
5.
Mol Pharm ; 18(5): 1905-1919, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33797925

RESUMEN

Amorphous solid dispersions (ASDs) are used to increase the solubility of oral medicines by kinetically stabilizing the more soluble amorphous phase of an active pharmaceutical ingredient with a suitable amorphous polymer. Low levels of a crystalline material in an ASD can negatively impact the desired dissolution properties of the drug. Characterization techniques such as powder X-ray diffraction (pXRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) are often used to detect and measure any crystallinity within ASDs. These techniques are unable to detect or quantify very low levels because they have limits of detection typically in the order of 1-5%. Herein, an ASD of felodipine (FEL) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) prepared via a hot melt extrusion (HME) in a mass ratio of 30:70 was characterized using a range of techniques. No signs of residual crystallinity were found by pXRD, DSC, or FTIR. However, transmission electron microscopy (TEM) did identify two areas containing crystals at the edges of milled particles from a total of 55 examined. Both crystalline areas contained Cl Kα X-ray peaks when measured by energy-dispersive X-ray spectroscopy, confirming the presence of FEL (due to the presence of Cl atoms in FEL and not in PVP/VA). Further analysis was carried out by TEM using conical dark field (DF) imaging of a HME ASD of 50:50 FEL-PVP/VA to provide insights into the recrystallization process that occurs at the edges of particles during accelerated ageing conditions in an atmosphere of 75% relative humidity. Multiple metastable polymorphs of recrystallized FEL could be identified by selected area electron diffraction (SAED), predominately form II and the more stable form I. Conical DF imaging was also successful in spatially resolving and sizing crystals. This work highlights the potential for TEM-based techniques to improve the limit of detection of crystallinity in ASDs, while also providing insights into transformation pathways by identifying the location, size, and form of any crystallization that might occur on storage. This opens up the possibility of providing an enhanced understanding of a drug product's stability and performance.


Asunto(s)
Cristalización , Excipientes/química , Administración Oral , Disponibilidad Biológica , Química Farmacéutica , Composición de Medicamentos/métodos , Liberación de Fármacos , Estabilidad de Medicamentos , Microscopía Electrónica de Transmisión , Polvos , Solubilidad , Difracción de Rayos X
6.
Philos Trans A Math Phys Eng Sci ; 378(2186): 20190601, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33100161

RESUMEN

We review the use of transmission electron microscopy (TEM) and associated techniques for the analysis of beam-sensitive materials and complex, multiphase systems in-situ or close to their native state. We focus on materials prone to damage by radiolysis and explain that this process cannot be eliminated or switched off, requiring TEM analysis to be done within a dose budget to achieve an optimum dose-limited resolution. We highlight the importance of determining the damage sensitivity of a particular system in terms of characteristic changes that occur on irradiation under both an electron fluence and flux by presenting results from a series of molecular crystals. We discuss the choice of electron beam accelerating voltage and detectors for optimizing resolution and outline the different strategies employed for low-dose microscopy in relation to the damage processes in operation. In particular, we discuss the use of scanning TEM (STEM) techniques for maximizing information content from high-resolution imaging and spectroscopy of minerals and molecular crystals. We suggest how this understanding can then be carried forward for in-situ analysis of samples interacting with liquids and gases, provided any electron beam-induced alteration of a specimen is controlled or used to drive a chosen reaction. Finally, we demonstrate that cryo-TEM of nanoparticle samples snap-frozen in vitreous ice can play a significant role in benchmarking dynamic processes at higher resolution. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.

7.
Mol Pharm ; 15(11): 5114-5123, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30212216

RESUMEN

During drug development control of polymorphism, particle properties and impurities are critical for ensuring a good quality, reproducible, and safe medicine. A wide variety of analytical techniques are employed in demonstrating the regulators control over the drug substance and product manufacturing, storage, and supply. Transmission electron microscopy (TEM) offers the opportunity to analyze in detail pharmaceutical systems at a length scale and limit of detection not readily achieved by many traditional techniques. However, the use of TEM as a characterization tool for drug development is uncommon due to possible damage caused by the electron beam. This work outlines the development of a model, using molecular descriptors, to predict the electron beam stability of active pharmaceutical ingredients (API). For a given set of conditions and a particular imaging or analytical mode, the total number of electrons per unit area, which causes observable damage to a sample in the TEM, can be defined as the critical fluence ( CF). Here the CF of 20 poorly water-soluble APIs were measured using selected area electron diffraction. Principal component analysis was used to select the most influential molecular descriptors on CF, which were shown to be descriptors involving the degree of conjugation, the number of hydrogen bond donors and acceptors, and the number of rotatable bonds. These were used to generate several multiple linear regression models. The model that provided the best fit to the measured CF data included the ratio of the number of conjugated carbons to nonconjugated carbons, the ratio of the number of hydrogen bond donors to acceptors, and the ratio of the number of hydrogen bond acceptors to donors. Using this model, the CF of the majority of the compounds was predicted within ±2 e-/Å2. Molecules with no hydrogen bond acceptors did not fit the model accurately possibly due to the limited sample size or the influence of other parameters not included in this model, such as intermolecular bond energies. The model presented can be used to support pharmaceutical development by quickly assessing the stability of other poorly soluble drugs in TEM. Provided that the model suggests that the API is relatively stable to electron irradiation, TEM offers the prospect of determining the presence of crystalline material at low levels at length scales and limits of detection unobtainable by other techniques. This is particularly so for amorphous solid dispersions.


Asunto(s)
Composición de Medicamentos/métodos , Desarrollo de Medicamentos/métodos , Electrones/efectos adversos , Preparaciones Farmacéuticas/química , Rastreo Diferencial de Calorimetría , Cristalización , Composición de Medicamentos/normas , Contaminación de Medicamentos/prevención & control , Desarrollo de Medicamentos/normas , Estabilidad de Medicamentos , Enlace de Hidrógeno/efectos de la radiación , Microscopía Electrónica de Transmisión , Control de Calidad , Solubilidad/efectos de la radiación
8.
J Am Chem Soc ; 139(34): 11833-11844, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28786666

RESUMEN

Multivalent protein-carbohydrate interactions initiate the first contacts between virus/bacteria and target cells, which ultimately lead to infection. Understanding the structures and binding modes involved is vital to the design of specific, potent multivalent inhibitors. However, the lack of structural information on such flexible, complex, and multimeric cell surface membrane proteins has often hampered such endeavors. Herein, we report that quantum dots (QDs) displayed with a dense array of mono-/disaccharides are powerful probes for multivalent protein-glycan interactions. Using a pair of closely related tetrameric lectins, DC-SIGN and DC-SIGNR, which bind to the HIV and Ebola virus glycoproteins (EBOV-GP) to augment viral entry and infect target cells, we show that such QDs efficiently dissect the different DC-SIGN/R-glycan binding modes (tetra-/di-/monovalent) through a combination of multimodal readouts: Förster resonance energy transfer (FRET), hydrodynamic size measurement, and transmission electron microscopy imaging. We also report a new QD-FRET method for quantifying QD-DC-SIGN/R binding affinity, revealing that DC-SIGN binds to the QD >100-fold tighter than does DC-SIGNR. This result is consistent with DC-SIGN's higher trans-infection efficiency of some HIV strains over DC-SIGNR. Finally, we show that the QDs potently inhibit DC-SIGN-mediated enhancement of EBOV-GP-driven transduction of target cells with IC50 values down to 0.7 nM, matching well to their DC-SIGN binding constant (apparent Kd = 0.6 nM) measured by FRET. These results suggest that the glycan-QDs are powerful multifunctional probes for dissecting multivalent protein-ligand recognition and predicting glyconanoparticle inhibition of virus infection at the cellular level.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Lectinas Tipo C/metabolismo , Polisacáridos/metabolismo , Puntos Cuánticos/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Disacáridos/química , Disacáridos/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Fiebre Hemorrágica Ebola/virología , Humanos , Modelos Moleculares , Monosacáridos/química , Polisacáridos/química , Puntos Cuánticos/química
9.
Nat Methods ; 11(11): 1177-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25218182

RESUMEN

For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h.


Asunto(s)
Rastreo Celular/métodos , Colorantes Fluorescentes , Puntos Cuánticos , Línea Celular , Humanos , Microscopía Fluorescente
12.
Soft Matter ; 13(35): 5922-5932, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28770261

RESUMEN

Four novel amino acid-functionalised triphenylenes have been prepared with glycine, l-alanine, l-phenylalanine and l-tryptophan ethyl ester side-chains. The glycine derivative is a good gelator of chloroform, the alanine derivative gels ethanol and toluene, and the phenylalanine derivative gels benzene and toluene. The tryptophan derivative does not gel any of the solvents tested, most probably due to its more bulky structure, but forms microspheres by evaporation-induced self-assembly. The self-assembly properties of the π-gelators have been investigated using infrared, UV-absorption and fluorescence spectroscopy, concentration- and temperature-dependent NMR, and X-ray scattering experiments on dried xerogel as well as the wet organogel. The latter experiments suggest the glycine gel in chloroform includes columnar aggregates, with an overall disordered columnar oblique mesophase. These compounds are of interest because of the well-known hole-transporting properties of triphenylene liquid crystals: 1-D columnar assemblies of these compounds may find applications in organic electronic devices.

13.
J Microsc ; 261(2): 167-76, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25762522

RESUMEN

Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general.


Asunto(s)
Endocitosis , Nanopartículas/análisis , Puntos Cuánticos/análisis , Línea Celular , Endosomas/ultraestructura , Citometría de Flujo , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Puntos Cuánticos/ultraestructura , Semiconductores
14.
Nanotechnology ; 26(15): 155101, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25797791

RESUMEN

The application of nanoparticles (NPs) within medicine is of great interest; their innate physicochemical characteristics provide the potential to enhance current technology, diagnostics and therapeutics. Recently a number of NP-based diagnostic and therapeutic agents have been developed for treatment of various diseases, where judicious surface functionalization is exploited to increase efficacy of administered therapeutic dose. However, quantification of heterogeneity associated with absolute dose of a nanotherapeutic (NP number), how this is trafficked across biological barriers has proven difficult to achieve. The main issue being the quantitative assessment of NP number at the spatial scale of the individual NP, data which is essential for the continued growth and development of the next generation of nanotherapeutics. Recent advances in sample preparation and the imaging fidelity of transmission electron microscopy (TEM) platforms provide information at the required spatial scale, where individual NPs can be individually identified. High spatial resolution however reduces the sample frequency and as a result dynamic biological features or processes become opaque. However, the combination of TEM data with appropriate probabilistic models provide a means to extract biophysical information that imaging alone cannot. Previously, we demonstrated that limited cell sampling via TEM can be statistically coupled to large population flow cytometry measurements to quantify exact NP dose. Here we extended this concept to link TEM measurements of NP agglomerates in cell culture media to that encapsulated within vesicles in human osteosarcoma cells. By construction and validation of a data-driven transfer function, we are able to investigate the dynamic properties of NP agglomeration through endocytosis. In particular, we statistically predict how NP agglomerates may traverse a biological barrier, detailing inter-agglomerate merging events providing the basis for predictive modelling of nanopharmacology.


Asunto(s)
Medios de Cultivo/química , Nanomedicina/métodos , Nanopartículas/química , Nanotecnología/métodos , Transporte Biológico , Línea Celular Tumoral , Simulación por Computador , Sistemas de Liberación de Medicamentos , Endocitosis , Endosomas/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Modelos Estadísticos , Osteosarcoma/metabolismo , Probabilidad , Puntos Cuánticos
16.
Phys Chem Chem Phys ; 17(1): 493-9, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25408232

RESUMEN

The propagation of light in photonic materials can be modified to increase the probability of photon absorption. Here we report the synthesis of composite materials comprising a photochemically inert photonic macroporous ZrO2 support decorated with photocatalytically active CdS nanoparticles. The relative energies of valence and conduction bands restrict photon absorption and catalysis to the CdS nanoparticles. The generation of hydrogen from water under visible light illumination (>400 nm) has been studied as a function of the photonic support. A maximum 4.7 fold enhancement in hydrogen production is observed compared to a non-photonic support when the absorption band of the CdS nanoparticles partially overlaps with the blue edge of the photonic ZrO2 stop band. This general strategy supports the independent optimization of optical and photochemical processes to increase the overall conversion efficiency of solar to chemical energy.

17.
Nature ; 514(7521): 177-8, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25297431
18.
Chem Res Toxicol ; 27(4): 558-67, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24575710

RESUMEN

ZnO nanoparticles (NPs) are prone to dissolution, and uncertainty remains whether biological/cellular responses to ZnO NPs are solely due to the release of Zn(2+) or whether the NPs themselves have additional toxic effects. We address this by establishing ZnO NP solubility in dispersion media (Dulbecco's modified Eagle's medium, DMEM) held under conditions identical to those employed for cell culture (37 °C, 5% CO2, and pH 7.68) and by systematic comparison of cell-NP interaction for three different ZnO NP preparations. For NPs at concentrations up to 5.5 µg ZnO/mL, dissolution is complete (with the majority of the soluble zinc complexed to dissolved ligands in the medium), taking ca. 1 h for uncoated and ca. 6 h for polymer coated ones. Above 5.5 µg/mL, the results are consistent with the formation of zinc carbonate, keeping the solubilized zinc fixed to 67 µM of which only 0.45 µM is as free Zn(2+), i.e., not complexed to dissolved ligands. At these relatively high concentrations, NPs with an aliphatic polyether-coating show slower dissolution (i.e., slower free Zn(2+) release) and reprecipitation kinetics compared to those of uncoated NPs, requiring more than 48 h to reach thermodynamic equilibrium. Cytotoxicity (MTT) and DNA damage (Comet) assay dose-response curves for three epithelial cell lines suggest that dissolution and reprecipitation dominate for uncoated ZnO NPs. Transmission electron microscopy combined with the monitoring of intracellular Zn(2+) concentrations and ZnO-NP interactions with model lipid membranes indicate that an aliphatic polyether coat on ZnO NPs increases cellular uptake, enhancing toxicity by enabling intracellular dissolution and release of Zn(2+). Similarly, we demonstrate that needle-like NP morphologies enhance toxicity by apparently frustrating cellular uptake. To limit toxicity, ZnO NPs with nonacicular morphologies and coatings that only weakly interact with cellular membranes are recommended.


Asunto(s)
Nanopartículas del Metal/toxicidad , Óxido de Zinc/toxicidad , Línea Celular , Línea Celular Tumoral , Humanos , Cinética , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Solubilidad , Óxido de Zinc/química
19.
Nanotechnology ; 25(46): 465601, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25354780

RESUMEN

The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure. Here we describe detailed studies of carbon produced by the passage of a current through graphite which provide strong evidence that the transformed carbon is indeed three-dimensional. The evidence comes primarily from images obtained in the scanning transmission electron microscope using the technique of high-angle annular dark-field imaging, and from a detailed analysis of electron energy loss spectra. We discuss the possible mechanism of the transformation, and consider potential applications of 'three-dimensional bilayer graphene'.

20.
Langmuir ; 29(23): 6876-83, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23675906

RESUMEN

Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nanometer- to micrometer-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations, and amino acids. The data suggest that one-third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide undercoordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nanometer- to micrometer-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile.


Asunto(s)
Ácido Glutámico/química , Titanio/química , Adsorción , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA