Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 27(12): 3178-3180, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34559045

RESUMEN

In vitro determination of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies induced in serum samples from recipients of the CoronaVac vaccine showed a short protection period against the original virus strain and limited protection against variants of concern. These data provide support for vaccine boosters, especially variants of concern circulate.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
2.
Microbiol Immunol ; 65(10): 405-409, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33835528

RESUMEN

In early January 2020, Thailand became the first country where a coronavirus disease 2019 (COVID-19) patient was identified outside China. In this study, 23 whole genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from patients who were hospitalized from January to March 2020 were analyzed, along with their travel histories. Six lineages were identified including A, A.6, B, B.1, B.1.8, and B.58, among which lineage A.6 was dominant. Seven patients were from China who traveled to Thailand in January and early February. Five of them were infected with the B lineage virus, and the other two cases were infected with different lineages including A and A.6. These findings present clear evidence of the early introduction of diverse SARS-CoV-2 clades in Thailand.


Asunto(s)
COVID-19 , SARS-CoV-2 , China , Genoma Viral , Humanos , Tailandia
3.
J Med Virol ; 92(10): 2193-2199, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32401343

RESUMEN

In the age of a pandemic, such as the ongoing one caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world faces a limited supply of tests, personal protective equipment, and factories and supply chains are struggling to meet the growing demands. This study aimed to evaluate the efficacy of specimen pooling for testing of SARS-CoV-2 virus, to determine whether costs and resource savings could be achieved without impacting the sensitivity of the testing. Ten previously tested nasopharyngeal and throat swab specimens by real-time polymerase chain reaction (PCR), were pooled for testing, containing either one or two known positive specimens of varying viral concentrations. Specimen pooling did not affect the sensitivity of detecting SARS-CoV-2 when the PCR cycle threshold (Ct) of original specimen was lower than 35. In specimens with low viral load (Ct > 35), 2 of 15 pools (13.3%) were false negative. Pooling specimens to test for Coronavirus Disease 2019 infection in low prevalence (≤1%) areas or in low risk populations can dramatically decrease the resource burden on laboratory operations by up to 80%. This paves the way for large-scale population screening, allowing for assured policy decisions by governmental bodies to ease lockdown restrictions in areas with a low incidence of infection, or with lower-risk populations.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , Manejo de Especímenes/métodos , COVID-19/economía , COVID-19/virología , Prueba de COVID-19/economía , Notificación de Enfermedades/economía , Notificación de Enfermedades/métodos , Monitoreo Epidemiológico , Humanos , Límite de Detección , Nasofaringe/virología , Faringe/virología , Prevalencia , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/economía , Estudios Retrospectivos , Manejo de Especímenes/economía , Tailandia/epidemiología , Carga Viral
4.
Euro Surveill ; 25(8)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32127124

RESUMEN

We report two cases of coronavirus disease 2019 (COVID-19) in travellers from Wuhan, China to Thailand. Both were independent introductions on separate flights, discovered with thermoscanners and confirmed with RT-PCR and genome sequencing. Both cases do not seem directly linked to the Huanan Seafood Market in Hubei but the viral genomes are identical to four other sequences from Wuhan, suggesting early spread within the city already in the first week of January.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus , Genoma Viral , Neumonía Viral , Anciano , Betacoronavirus/aislamiento & purificación , COVID-19 , China/epidemiología , Mapeo Cromosómico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Femenino , Humanos , Anamnesis , Persona de Mediana Edad , Filogenia , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Tailandia , Viaje
5.
Euro Surveill ; 22(33)2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28840828

RESUMEN

Thailand reported the first Middle East respiratory syndrome (MERS) case on 18 June 2015 (day 4) in an Omani patient with heart condition who was diagnosed with pneumonia on hospital admission on 15 June 2015 (day 1). Two false negative RT-PCR on upper respiratory tract samples on days 2 and 3 led to a 48-hour diagnosis delay and a decision to transfer the patient out of the negative pressure unit (NPU). Subsequent examination of sputum later on day 3 confirmed MERS coronavirus (MERS-CoV) infection. The patient was immediately moved back into the NPU and then transferred to Bamrasnaradura Infectious Disease Institute. Over 170 contacts were traced; 48 were quarantined and 122 self-monitored for symptoms. High-risk close contacts exhibiting no symptoms, and whose laboratory testing on the 12th day after exposure was negative, were released on the 14th day. The Omani Ministry of Health (MOH) was immediately notified using the International Health Regulation (IHR) mechanism. Outbreak investigation was conducted in Oman, and was both published on the World Health Organization (WHO) intranet and shared with Thailand's IHR focal point. The key to successful infection control, with no secondary transmission, were the collaborative efforts among hospitals, laboratories and MOHs of both countries.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Infección Hospitalaria/virología , Control de Infecciones , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Adulto , Anciano , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Infección Hospitalaria/diagnóstico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Diagnóstico Tardío , Notificación de Enfermedades , Brotes de Enfermedades , Humanos , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Omán/etnología , Reacción en Cadena en Tiempo Real de la Polimerasa , Tailandia/epidemiología
6.
Am J Epidemiol ; 179(3): 353-60, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24197388

RESUMEN

Dengue virus has traditionally caused substantial morbidity and mortality among children less than 15 years of age in Southeast Asia. Over the last 2 decades, a significant increase in the mean age of cases has been reported, and a once pediatric disease now causes substantial burden among the adult population. An age-stratified serological study (n = 1,736) was conducted in 2010 among schoolchildren in the Mueang Rayong district of Thailand, where a similar study had been conducted in 1980/1981. Serotype-specific forces of infection (λ(t)) and basic reproductive numbers (R0) of dengue were estimated for the periods 1969-1980 and 1993-2010. Despite a significant increase in the age at exposure and a decrease in λ(t) from 0.038/year to 0.019/year, R0 changed only from 3.3 to 3.2. Significant heterogeneity was observed across subdistricts and schools, with R0 ranging between 1.7 and 6.8. These findings are consistent with the idea that the observed age shift might be a consequence of the demographic transition in Thailand. Changes in critical vaccination fractions, estimated by using R0, have not accompanied the increase in age at exposure. These results have implications for dengue control interventions because multiple countries in Southeast Asia are undergoing similar demographic transitions. It is likely that dengue will never again be a disease exclusively of children.


Asunto(s)
Dengue/epidemiología , Adolescente , Distribución por Edad , Anticuerpos Antivirales/sangre , Número Básico de Reproducción , Biomarcadores/sangre , Niño , Preescolar , Estudios Transversales , Dengue/sangre , Dengue/prevención & control , Dengue/transmisión , Virus del Dengue/inmunología , Encuestas Epidemiológicas , Humanos , Lactante , Modelos Estadísticos , Estudios Seroepidemiológicos , Tailandia/epidemiología , Vacunación
7.
Viruses ; 16(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675878

RESUMEN

Emerging coronaviruses (CoVs) are understood to cause critical human and domestic animal diseases; the spillover from wildlife reservoirs can result in mild and severe respiratory illness in humans and domestic animals and can spread more readily in these naïve hosts. A low-cost CoV molecular method that can detect a variety of CoVs from humans, animals, and environmental specimens is an initial step to ensure the early identification of known and new viruses. We examine a collection of 50 human, 46 wastewater, 28 bat, and 17 avian archived specimens using 3 published pan-CoV PCR assays called Q-, W-, and X-CoV PCR, to compare the performance of each assay against four CoV genera. X-CoV PCR can detect all four CoV genera, but Q- and W-CoV PCR failed to detect δ-CoV. In total, 21 (42.0%), 9 (18.0%), and 21 (42.0%) of 50 human specimens and 30 (65.22%), 6 (13.04%), and 27 (58.70%) of 46 wastewater specimens were detected using Q-, W-, and X-CoV PCR assays, respectively. The X-CoV PCR assay has a comparable sensitivity to Q-CoV PCR in bat CoV detection. Combining Q- and X-CoV PCR assays can increase sensitivity and avoid false negative results in the early detection of novel CoVs.


Asunto(s)
Coronavirus , Sensibilidad y Especificidad , Humanos , Animales , Coronavirus/genética , Coronavirus/clasificación , Coronavirus/aislamiento & purificación , Aguas Residuales/virología , Quirópteros/virología , Aves/virología , Reacción en Cadena de la Polimerasa/métodos , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/diagnóstico
8.
Int J Infect Dis ; 136: 5-10, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652092

RESUMEN

OBJECTIVES: We conducted molecular characterization, demonstrated the geographical distribution of Zika virus (ZIKV) circulating worldwide from 1947 to 2022 and explored the potential genetic recombination site in the Thailand ZIKV genomes. METHODS: We constructed phylogenetic trees based on ZIKV coding sequences (CDS) and determined the geographical distribution of the representative viruses by genetic relationship and timeline. We determined genetic recombination among ZIKV and between ZIKV and other flaviviruses using similarity plot and bootscan analyzes, together with the phylogeny encompassing the CDS and eight subgenomic regions. RESULTS: The phylogenetic trees comprising 717 CDS showed two distinct African and Asian lineages. ZIKV in the African lineage formed two sublineages, and ZIKV in the Asian lineage diversified into the Asian and American sublineages. The 1966 Malaysian isolate was designated the prototype of the Asian sublineage and formed a node of only one member, while the newer viruses formed a distinct node. We detected no genetic recombination in the Thailand ZIKV. CONCLUSION: Five Thailand isolates discovered in 2006 were the second oldest ZIKV after the Malaysian prototype. Our result suggested two independent routes of ZIKV spread from Southeast Asia to Micronesia in 2007 and French Polynesia in 2013 before further spreading to South American countries.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Infección por el Virus Zika/epidemiología , Filogenia , Tailandia/epidemiología , Micronesia
9.
Res Sq ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711810

RESUMEN

The rapid emergence of SARS-CoV-2 variants with high severity and transmutability adds further urgency for rapid and multiplex molecular testing to identify the variants. A nucleotide matrix-assisted laser-desorption-ionization time-of-flight mass spectrophotometry (MALDI-TOF MS)-based assay was developed (called point mutation array, PMA) to identify four major SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Delta, and Omicron (namely PMA-ABDO) and differentiate Omicron subvariant (namely PMA-Omicron). PMA-ABDO and PMA-Omicron consist of 24 and 28 mutation sites of the spike gene. Both PMA panels specifically identified VOCs with as low as 10 viral copies/ µl. The panel has shown a 100% concordant with the Next Generation Sequencing (NGS) results testing on 256 clinical specimens with real-time PCR cycle threshold (Ct) values less than 26. It showed a higher sensitivity over NGS; 25/28 samples were positive by PMA but not NGS in the clinical samples with PCR Ct higher than 26. Due to the mass of nucleotide used to differentiate between wild-type and mutation strains, the co-infection or recombination of multiple variants can be determined by the PMA method. This method is flexible in adding a new primer set to identify a new emerging mutation site among the current circulating VOCs and the turnaround time is less than 8 hours. However, the spike gene sequencing or NGS retains the advantage of detecting newly emerged variants.

10.
Sci Rep ; 13(1): 2089, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747014

RESUMEN

The rapid emergence of SARS-CoV-2 variants with high severity and transmutability adds further urgency for rapid and multiplex molecular testing to identify the variants. A nucleotide matrix-assisted laser-desorption-ionization time-of-flight mass spectrophotometry (MALDI-TOF MS)-based assay was developed (called point mutation array, PMA) to identify four major SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Delta, and Omicron (namely PMA-ABDO) and differentiate Omicron subvariant (namely PMA-Omicron). PMA-ABDO and PMA-Omicron consist of 24 and 28 mutation sites of the spike gene. Both PMA panels specifically identified VOCs with as low as 10 viral copies/µl. The panel has shown a 100% concordant with the Next Generation Sequencing (NGS) results testing on 256 clinical specimens with real-time PCR cycle threshold (Ct) values less than 26. It showed a higher sensitivity over NGS; 25/28 samples were positive by PMA but not NGS in the clinical samples with PCR Ct higher than 26. Due to the mass of nucleotide used to differentiate between wild-type and mutation strains, the co-infection or recombination of multiple variants can be determined by the PMA method. This method is flexible in adding a new primer set to identify a new emerging mutation site among the current circulating VOCs and the turnaround time is less than 8 h. However, the spike gene sequencing or NGS retains the advantage of detecting newly emerged variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reacción en Cadena de la Polimerasa Multiplex , COVID-19/diagnóstico , Nucleótidos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tecnología , Prueba de COVID-19
11.
Viruses ; 15(4)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37112855

RESUMEN

Wastewater surveillance is considered a promising approach for COVID-19 surveillance in communities. In this study, we collected wastewater samples between November 2020 and February 2022 from twenty-three sites in the Bangkok Metropolitan Region to detect the presence of SARS-CoV-2 and its variants for comparison to standard clinical sampling. A total of 215 wastewater samples were collected and tested for SARS-CoV-2 RNA by real-time PCR with three targeted genes (N, E, and ORF1ab); 102 samples were positive (42.5%). The SARS-CoV-2 variants were determined by a multiplex PCR MassARRAY assay to distinguish four SARS-CoV-2 variants, including Alpha, Beta, Delta, and Omicron. Multiple variants of Alpha-Delta and Delta-Omicron were detected in the wastewater samples in July 2021 and January 2022, respectively. These wastewater variant results mirrored the country data from clinical specimens deposited in GISAID. Our results demonstrated that wastewater surveillance using multiple signature mutation sites for SARS-CoV-2 variant detection is an appropriate strategy to monitor the presence of SARS-CoV-2 variants in the community at a low cost and with rapid turn-around time. However, it is essential to note that sequencing surveillance of wastewater samples should be considered complementary to whole genome sequencing of clinical samples to detect novel variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , ARN Viral/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Tailandia
12.
Adv Virol ; 2023: 4940767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094619

RESUMEN

The emergence of Omicron as the fifth variant of concern within the SARS-CoV-2 pandemic in late 2021, characterized by its rapid transmission and distinct spike gene mutations, underscored the pressing need for cost-effective and efficient methods to detect viral variants, especially given their evolving nature. This study sought to address this need by assessing the effectiveness of two SARS-CoV-2 variant classification platforms based on RT-PCR and mass spectrometry. The primary aim was to differentiate between Delta, Omicron BA.1, and Omicron BA.2 variants using 618 COVID-19-positive samples collected from Bangkok patients between November 2011 and March 2022. The analysis revealed that both BA.1 and BA.2 variants exhibited significantly higher transmission rates, up to 2-3 times, when compared to the Delta variant. This research presents a cost-efficient approach to virus surveillance, enabling a quantitative evaluation of variant-specific public health implications, crucial for informing and adapting public health strategies.

13.
Vaccines (Basel) ; 10(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36016209

RESUMEN

We determined the levels of neutralizing antibodies against the SARS-CoV-2 ancestral strain, Delta and Omicron variants of concern (VOCs), in 125 healthcare workers who received CoronaVac as their primary vaccination and later received either a single ChAdOx1 or a combi-nation of two consecutive boosters using either two ChAdOx1 doses or a ChAdOx1 or BNT162b2 as the primary and second boosters, respectively, or two doses of BNT162b2. The titers 12 weeks after primary vaccination were inadequate to neutralize all strains. After a single ChAdOx1 booster, the levels of neutralization at Day 30 varied significantly, with only a small proportion of participants developing neutralizing titers against Omicron at Day 7 and 30. The two doses of ChAdOx1 as the booster induced the lowest activity. A combination ChAdOx1 and BNT162b2 induced greater neutralization than by two doses of ChAdOx1. Two doses of BNT162b2 as the booster had the maximal activity against Omicron VOC.

14.
BMC Public Health ; 11 Suppl 2: S3, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21388563

RESUMEN

A cornerstone of effective disease surveillance programs comprises the early identification of infectious threats and the subsequent rapid response to prevent further spread. Effectively identifying, tracking and responding to these threats is often difficult and requires international cooperation due to the rapidity with which diseases cross national borders and spread throughout the global community as a result of travel and migration by humans and animals. From Oct.1, 2008 to Sept. 30, 2009, the United States Department of Defense's (DoD) Armed Forces Health Surveillance Center Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) identified 76 outbreaks in 53 countries. Emerging infectious disease outbreaks were identified by the global network and included a wide spectrum of support activities in collaboration with host country partners, several of which were in direct support of the World Health Organization's (WHO) International Health Regulations (IHR) (2005). The network also supported military forces around the world affected by the novel influenza A/H1N1 pandemic of 2009. With IHR (2005) as the guiding framework for action, the AFHSC-GEIS network of international partners and overseas research laboratories continues to develop into a far-reaching system for identifying, analyzing and responding to emerging disease threats.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Brotes de Enfermedades/prevención & control , Salud Global , Vigilancia de Guardia , Control de Enfermedades Transmisibles/organización & administración , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Agencias Gubernamentales , Humanos , Cooperación Internacional , Personal Militar , Estados Unidos , Organización Mundial de la Salud
15.
Am J Trop Med Hyg ; 105(4): 936-941, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34339380

RESUMEN

Here, we describe the development of the in-house anti-Zika virus (ZIKV) IgM antibody capture ELISA (in-house ZIKV IgM ELISA) for the detection and diagnosis of acute ZIKV infections. We compared the in-house ZIKV IgM ELISA assay performance against two commercial kits, Euroimmun ZIKV IgM and InBios 2.0 ZIKV IgM ELISA. We tested the assays' ability to detect anti-ZIKV IgM using a well-defined serum sample panel. This panel included 80 ZIKV negative samples (20 negative, 20 found to be primary dengue virus [DENV][ infections, 20 secondary DENV infections, and 20 Japanese encephalitis virus [JEV] infections) and 67 ZIKV reverse transcriptase-polymerase chain reaction-positive acute serum samples. The OD values were calculated to enzyme immunoassay (EIA) unts by comparing them to weak positive controls. The results demonstrated the high sensitivity (88.06%) and specificity (90.00%) of our in-house ZIKV IgM ELISA and its 89.12% overall percentage agreement. The kappa values were deemed to be within excellent range and comparable to the InBios ZIKV IgM ELISA. Some cross-reactivity was observed among secondary DENV and JEV samples, and to a much lower extent, among primary DENV samples. These data indicate that our in-house ZIKV IgM ELISA is a reliable assay for the detection of anti-ZIKV IgM antibodies in serum.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , ARN Viral/sangre , Virus Zika/aislamiento & purificación , Anticuerpos Antivirales , Virus del Dengue/inmunología , Humanos , Inmunoglobulina G , Inmunoglobulina M , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad , Pruebas Serológicas
16.
One Health Outlook ; 3(1): 12, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34218820

RESUMEN

BACKGROUND: Nipah virus (NiV) infection causes encephalitis and has > 75% mortality rate, making it a WHO priority pathogen due to its pandemic potential. There have been NiV outbreak(s) in Malaysia, India, Bangladesh, and southern Philippines. NiV naturally circulates among fruit bats of the genus Pteropus and has been detected widely across Southeast and South Asia. Both Malaysian and Bangladeshi NiV strains have been found in fruit bats in Thailand. This study summarizes 20 years of pre-emptive One Health surveillance of NiV in Thailand, including triangulated surveillance of bats, and humans and pigs in the vicinity of roosts inhabited by NiV-infected bats. METHODS: Samples were collected periodically and tested for NiV from bats, pigs and healthy human volunteers from Wat Luang village, Chonburi province, home to the biggest P. lylei roosts in Thailand, and other provinces since 2001. Archived cerebrospinal fluid specimens from encephalitis patients between 2001 and 2012 were also tested for NiV. NiV RNA was detected using nested reverse transcription polymerase chain reaction (RT-PCR). NiV antibodies were detected using enzyme-linked immunosorbent assay or multiplex microsphere immunoassay. RESULTS: NiV RNA (mainly Bangladesh strain) was detected every year in fruit bats by RT-PCR from 2002 to 2020. The whole genome sequence of NiV directly sequenced from bat urine in 2017 shared 99.17% identity to NiV from a Bangladeshi patient in 2004. No NiV-specific IgG antibodies or RNA have been found in healthy volunteers, encephalitis patients, or pigs to date. During the sample collection trips, 100 community members were trained on how to live safely with bats. CONCLUSIONS: High identity shared between the NiV genome from Thai bats and the Bangladeshi patient highlights the outbreak potential of NiV in Thailand. Results from NiV cross-sectoral surveillance were conveyed to national authorities and villagers which led to preventive control measures, increased surveillance of pigs and humans in vicinity of known NiV-infected roosts, and increased vigilance and reduced risk behaviors at the community level. This proactive One Health approach to NiV surveillance is a success story; that increased collaboration between the human, animal, and wildlife sectors is imperative to staying ahead of a zoonotic disease outbreak.

17.
Front Public Health ; 8: 555013, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134237

RESUMEN

In resource-limited countries, early detection of novel pathogens is often challenging, due to financial and technical constraints. This study reports the efficacy of family-wide polymerase chain reaction (PCR) in screening, detecting, and identifying initial cases of the novel SARS-CoV-2 in Thailand. Respiratory secretions were collected from suspected individuals traveling from Wuhan, China to Thailand at the beginning of January 2020. Family-wide PCR assays yielded positive results for coronavirus in one traveler within 12 h on January 8, 2020. Nucleotide sequences (290 bp) showed 100% similarity to SARS-CoV-2. The whole genome sequence was further characterized by Next Generation Sequencing (NGS) for confirmation. Combining family-wide PCR, as a rapid screening tool, with NGS, for full genome characterization, could facilitate early detection and confirmation of a novel pathogen and enable early containment of a disease outbreak.


Asunto(s)
COVID-19 , China , Humanos , Reacción en Cadena de la Polimerasa , SARS-CoV-2 , Tailandia
18.
Jpn J Infect Dis ; 72(5): 343-346, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31155602

RESUMEN

We performed Leptospira culture analysis of 76 clinical samples collected from animals and of six soil samples for the investigation of a leptospirosis outbreak in southern Thailand in 2017. Leptospires were recovered from a kidney sample (a fatal canine leptospirosis case) and from all the soil samples. Next, 16S rRNA sequence analysis demonstrated that the clinical isolate was closely related to the pathogenic L. interrogans, whereas the soil isolates represented different species, including pathogenic L. ellisii, intermediate L. wolffii, and nonpathogenic L. yanagawae. Multilocus sequence typing identified an isolate of L. interrogans as a novel sequence type (ST263), suggesting that the causative agent of the canine leptospirosis in the southern Thailand outbreak has a unique genetic profile.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/microbiología , Brotes de Enfermedades , Genotipo , Leptospira interrogans/clasificación , Leptospira interrogans/aislamiento & purificación , Leptospirosis/veterinaria , Animales , Animales Domésticos , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Leptospira interrogans/genética , Leptospirosis/epidemiología , Leptospirosis/microbiología , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 16S/genética , Ratas , Microbiología del Suelo , Tailandia/epidemiología
19.
Pathogens ; 8(3)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382507

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne virus belonging to the genus Alphavirus. The virus is transmitted to humans by the bite of infected female Aedes mosquitoes, primarily Aedes aegypti. CHIKV infection is spreading worldwide, and it periodically sparks new outbreaks. There are no specific drugs or effective vaccines against CHIKV. The interruption of pathogen transmission by mosquito control provides the only effective approach to the control of CHIKV infection. Many studies have shown that CHIKV can be transmitted among the Ae. aegypti through vertical transmission. The previous chikungunya fever outbreaks in Thailand during 2008-2009 were caused by CHIKV, the East/Central/South African (ECSA) genotype. Recently, there have been 3794 chikungunya cases in 27 provinces reported by the Bureau of Epidemiology of Health Ministry, Thailand during 1 January-16 June 2019; however, the cause of the re-emergence of CHIKV outbreaks is uncertain. Therefore, the aims of this study were to detect and analyze the genetic diversity of CHIKV infection in field-caught mosquitoes. Both female and male Ae. aegypti were collected from endemic areas of Thailand, and CHIKV detection was done by using E1-nested RT-PCR and sequencing analysis. A total of 1646 Ae. aegypti samples (900 females and 746 males) were tested. CHIKV was detected in 54 (3.28%) and 14 samples (0.85%) in female and male mosquitoes, respectively. Seventeen samples of female Ae. aegypti collected from the Ubon Ratchathani, Chiang Rai, Chiang Mai, Nakhon Sawan, and Songkhla provinces found mutation at E1: A226V. Interestingly, E1: K211E mutation was observed in 50 samples collected from Nong Khai, Bangkok, Prachuap Khiri Khan, and Krabi. In addition, the phylogenetic tree indicated that CHIKV in Ae. aegypti samples were from the Indian Ocean Clade and East/South African Clade. Both clades belong to the ECSA genotype. The information obtained from this study could be used for prediction, epidemiological study, prevention, and effective vector control of CHIKV. For instance, a novel CHIKV strain found in new areas has the potential to lead to a new outbreak. Health authorities could plan and apply control strategies more effectively given the tools provided by this research.

20.
Clin Med Insights Case Rep ; 12: 1179547619835179, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886528

RESUMEN

Zika virus (ZIKV) continues to affect certain parts of the World. Here we report a case that supports breastfeeding regardless of mother ZIKV status by providing clinical and virological studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA