Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 130(12): 1965-1993, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679363

RESUMEN

As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.


Asunto(s)
Insuficiencia Cardíaca , Miocardio , Animales , Metabolismo Energético , Ácidos Grasos/metabolismo , Corazón , Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Modelos Animales , Miocardio/metabolismo
2.
Circulation ; 145(21): 1592-1604, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35354306

RESUMEN

BACKGROUND: In REDUCE LAP-HF II (A Study to Evaluate the Corvia Medical, Inc IASD System II to Reduce Elevated Left Atrial Pressure in Patients With Heart Failure), implantation of an atrial shunt device did not provide overall clinical benefit for patients with heart failure with preserved or mildly reduced ejection fraction. However, prespecified analyses identified differences in response in subgroups defined by pulmonary artery systolic pressure during submaximal exercise, right atrial volume, and sex. Shunt implantation reduces left atrial pressures but increases pulmonary blood flow, which may be poorly tolerated in patients with pulmonary vascular disease (PVD). On the basis of these results, we hypothesized that patients with latent PVD, defined as elevated pulmonary vascular resistance during exercise, might be harmed by shunt implantation, and conversely that patients without PVD might benefit. METHODS: REDUCE LAP-HF II enrolled 626 patients with heart failure, ejection fraction ≥40%, exercise pulmonary capillary wedge pressure ≥25 mm Hg, and resting pulmonary vascular resistance <3.5 Wood units who were randomized 1:1 to atrial shunt device or sham control. The primary outcome-a hierarchical composite of cardiovascular death, nonfatal ischemic stroke, recurrent HF events, and change in health status-was analyzed using the win ratio. Latent PVD was defined as pulmonary vascular resistance ≥1.74 Wood units (highest tertile) at peak exercise, measured before randomization. RESULTS: Compared with patients without PVD (n=382), those with latent PVD (n=188) were older, had more atrial fibrillation and right heart dysfunction, and were more likely to have elevated left atrial pressure at rest. Shunt treatment was associated with worse outcomes in patients with PVD (win ratio, 0.60 [95% CI, 0.42, 0.86]; P=0.005) and signal of clinical benefit in patients without PVD (win ratio, 1.31 [95% CI, 1.02, 1.68]; P=0.038). Patients with larger right atrial volumes and men had worse outcomes with the device and both groups were more likely to have pacemakers, heart failure with mildly reduced ejection fraction, and increased left atrial volume. For patients without latent PVD or pacemaker (n=313; 50% of randomized patients), shunt treatment resulted in more robust signal of clinical benefit (win ratio, 1.51 [95% CI, 1.14, 2.00]; P=0.004). CONCLUSIONS: In patients with heart failure with preserved or mildly reduced ejection fraction, the presence of latent PVD uncovered by invasive hemodynamic exercise testing identifies patients who may worsen with atrial shunt therapy, whereas those without latent PVD may benefit.


Asunto(s)
Cateterismo Cardíaco , Atrios Cardíacos , Insuficiencia Cardíaca , Enfermedades Vasculares , Cateterismo Cardíaco/instrumentación , Femenino , Atrios Cardíacos/cirugía , Insuficiencia Cardíaca/cirugía , Humanos , Masculino , Circulación Pulmonar , Volumen Sistólico , Resultado del Tratamiento , Enfermedades Vasculares/complicaciones
3.
FASEB J ; 35(11): e21956, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34605573

RESUMEN

MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.


Asunto(s)
Antígenos CD36/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Animales , Antígenos CD36/genética , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Células HEK293 , Insuficiencia Cardíaca/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , NADPH Oxidasa 4/genética , Ratas , Volumen Sistólico/genética , Transfección , Remodelación Ventricular/genética
4.
Catheter Cardiovasc Interv ; 100(3): 319-327, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35830719

RESUMEN

AIM: Cardiogenic shock (CS) is a hemodynamically complex multisystem syndrome associated with persistently high morbidity and mortality. As CS is characterized by progressive failure to provide adequate systemic perfusion, supporting end-organ perfusion using mechanical circulatory support (MCS) seems intriguing. Since most patients with CS present in the catheterization laboratory, percutaneously implantable systems have the widest adoption in the field. We evaluated feasibility, outcomes, and complications after the introduction of a full-percutaneous program for both the Impella CP device and venoarterial extracorporeal membrane oxygenator (VA-ECMO). METHODS: PREPARE CardShock (PRospective REgistry of PAtients in REfractory cardiogenic shock) is a prospective single-center registry, including 248 consecutive patients between May 2019 and April 2021, who underwent cardiac catheterization and displayed advanced cardiogenic shock. The median age was 70 (58-77) years and 28% were female. Sixty-five percent of the cases had cardiac arrest, of which 66% were out-of-hospital cardiac arrest. A local standard operating procedure (SOP) indicating indications as well as relative and absolute contraindications for different means of MCS (Impella CP or VA-ECMO) was used to guide MCS use. The primary endpoint was in-hospital death and secondary endpoints were spontaneous myocardial infarction and major bleedings during the hospital stay. RESULTS: Overall mortality was 50.4% with a median survival of 2 (0-6) days. Significant independent predictors of mortality were cardiac arrest during the index event (odds ratio [OR] with 95% confidence interval [CI]: 2.53 [1.43-4.51]; p = 0.001), age > 65 years (OR: 2.05 [1.03-4.09]; p = 0.036]), pH < 7.30 (OR: 2.69 [1.56-4.66]; p < 0.001), and lactate levels > 2 mmol/L (OR: 4.51 [2.37-8.65]; p < 0.001). CONCLUSIONS: Conclusive SOPs assist target-orientated MCS use in CS. This study provides guidance on the implementation, validation, and modification of newly established MCS programs to aid centers that are establishing such programs.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Paro Cardíaco , Corazón Auxiliar , Anciano , Femenino , Corazón Auxiliar/efectos adversos , Mortalidad Hospitalaria , Humanos , Masculino , Sistema de Registros , Estudios Retrospectivos , Choque Cardiogénico/diagnóstico , Choque Cardiogénico/etiología , Choque Cardiogénico/terapia , Resultado del Tratamiento
5.
Arterioscler Thromb Vasc Biol ; 41(10): 2563-2574, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34348490

RESUMEN

Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Linfocitos/metabolismo , Obesidad/metabolismo , Paniculitis/metabolismo , Factor 5 Asociado a Receptor de TNF/deficiencia , Adipocitos/inmunología , Adipocitos/patología , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Adiposidad , Adulto , Anciano , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Humanos , Linfocitos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética , Obesidad/inmunología , Obesidad/patología , Paniculitis/genética , Paniculitis/inmunología , Paniculitis/patología , Transducción de Señal , Factor 5 Asociado a Receptor de TNF/genética
6.
Int J Mol Sci ; 22(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064558

RESUMEN

The discovery and characterization of sirtuins as NAD+-dependent deacylases have transformed our understanding of post-translational protein regulation [...].


Asunto(s)
Inflamación/fisiopatología , Enfermedades Renales/fisiopatología , Neoplasias/fisiopatología , Sirtuinas/metabolismo , Animales , Humanos , Inflamación/metabolismo , Enfermedades Renales/metabolismo , Neoplasias/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670142

RESUMEN

Oxidative stress contributes to detrimental functional decline of the myocardium, leading to the impairment of the antioxidative defense, dysregulation of redox signaling, and protein damage. In order to precisely dissect the changes of the myocardial redox state correlated with oxidative stress and heart failure, we subjected left-ventricular tissue specimens collected from control or failing human hearts to comprehensive mass spectrometry-based redox and quantitative proteomics, as well as glutathione status analyses. As a result, we report that failing hearts have lower glutathione to glutathione disulfide ratios and increased oxidation of a number of different proteins, including constituents of the contractile machinery as well as glycolytic enzymes. Furthermore, quantitative proteomics of failing hearts revealed a higher abundance of proteins responsible for extracellular matrix remodeling and reduced abundance of several ion transporters, corroborating contractile impairment. Similar effects were recapitulated by an in vitro cell culture model under a controlled oxygen atmosphere. Together, this study provides to our knowledge the most comprehensive report integrating analyses of protein abundance and global and peptide-level redox state in end-stage failing human hearts as well as oxygen-dependent redox and global proteome profiles of cultured human cardiomyocytes.


Asunto(s)
Perfilación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Espectrometría de Masas , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
Circulation ; 139(7): 918-931, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586717

RESUMEN

BACKGROUND: Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. METHODS: Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. RESULTS: Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition-reported to protect patients with depression from cardiovascular events-resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. CONCLUSIONS: Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.


Asunto(s)
Plaquetas/metabolismo , Degranulación de la Célula , Infarto del Miocardio/sangre , Daño por Reperfusión Miocárdica/sangre , Miocardio/metabolismo , Neutrófilos/metabolismo , Serotonina/sangre , Síndrome Coronario Agudo/sangre , Animales , Antígeno CD11b/sangre , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Humanos , Peróxido de Hidrógeno/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Neutrófilos/patología , Peroxidasa/sangre , Triptófano Hidroxilasa/deficiencia , Triptófano Hidroxilasa/genética
9.
Circ Res ; 122(1): 58-73, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29092894

RESUMEN

RATIONALE: Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. OBJECTIVE: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. METHODS AND RESULTS: Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. CONCLUSIONS: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Miocitos Cardíacos/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Preparación de Corazón Aislado/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
10.
Pharmacol Res ; 158: 104870, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32434052

RESUMEN

AIMS: Sodium-glucose co-transporter 2 (SGLT2) were originally developed as kidney-targeting anti-diabetic drugs. However, due to their beneficial cardiac off-target effects (as SGLT2 is not expressed in the heart), these antagonists currently receive intense clinical interest in the context of heart failure (HF) in patients with or without diabetes mellitus (DM). Since the mechanisms by which these beneficial effects are mediated are still unclear yet, inflammation that is present in DM and HF has been proposed as a potential pharmacological intervention strategy. Therefore, we tested the hypothesis that the SGLT2 inhibitor, empagliflozin, displays anti-inflammatory potential along with its glucose-lowering property. METHODS AND RESULTS: Lipopolysaccharide (LPS) was used to induce inflammation in vitro and in vivo. In cardiomyocytes and macrophages empagliflozin attenuated LPS-induced TNFα and iNOS expression. Analysis of intracellular signalling pathways suggested that empagliflozin activates AMP kinase (AMPK) in both cell types with or without LPS-treatment. Moreover, the SGLT2 inhibitor increased the expression of anti-inflammatory M2 marker proteins in LPS-treated macrophages. Additionally, empagliflozin-mediated AMPK activation prevented LPS-induced ATP/ADP depletion. In vivo administration of LPS in mice impaired cardiac contractility and aortic endothelial relaxation in response to acetylcholine, whereby co-administration of empagliflozin preserved cardiovascular function. These findings were accompanied by improved cardiac AMPK phosphorylation and ATP/ADP, reduced cardiac iNOS, plasma TNFα and creatine kinase MB levels. CONCLUSION: Our data identify a novel cardio protective mechanism of SGLT2 inhibitor, empagliflozin, suggesting that AMPK activation-mediated energy repletion and reduced inflammation contribute to the observed cardiovascular benefits of the drug in HF.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Cardiotónicos/farmacología , Glucósidos/farmacología , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Compuestos de Bencidrilo/uso terapéutico , Cardiotónicos/uso terapéutico , Relación Dosis-Respuesta a Droga , Metabolismo Energético , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Glucósidos/uso terapéutico , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Células RAW 264.7 , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
11.
Eur Heart J ; 40(10): 842-853, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30496390

RESUMEN

AIMS: Short-QT syndrome 1 (SQT1) is an inherited channelopathy with accelerated repolarization due to gain-of-function in HERG/IKr. Patients develop atrial fibrillation, ventricular tachycardia (VT), and sudden cardiac death with pronounced inter-individual variability in phenotype. We generated and characterized transgenic SQT1 rabbits and investigated electrical remodelling. METHODS AND RESULTS: Transgenic rabbits were generated by oocyte-microinjection of ß-myosin-heavy-chain-promoter-KCNH2/HERG-N588K constructs. Short-QT syndrome 1 and wild type (WT) littermates were subjected to in vivo ECG, electrophysiological studies, magnetic resonance imaging, and ex vivo action potential (AP) measurements. Electrical remodelling was assessed using patch clamp, real-time PCR, and western blot. We generated three SQT1 founders. QT interval was shorter and QT/RR slope was shallower in SQT1 than in WT (QT, 147.8 ± 2 ms vs. 166.4 ± 3, P < 0.0001). Atrial and ventricular refractoriness and AP duration were shortened in SQT1 (vAPD90, 118.6 ± 5 ms vs. 154.4 ± 2, P < 0.0001). Ventricular tachycardia/fibrillation (VT/VF) inducibility was increased in SQT1. Systolic function was unaltered but diastolic relaxation was enhanced in SQT1. IKr-steady was increased with impaired inactivation in SQT1, while IKr-tail was reduced. Quinidine prolonged/normalized QT and action potential duration (APD) in SQT1 rabbits by reducing IKr. Diverse electrical remodelling was observed: in SQT1, IK1 was decreased-partially reversing the phenotype-while a small increase in IKs may partly contribute to an accentuation of the phenotype. CONCLUSION: Short-QT syndrome 1 rabbits mimic the human disease phenotype on all levels with shortened QT/APD and increased VT/VF-inducibility and show similar beneficial responses to quinidine, indicating their value for elucidation of arrhythmogenic mechanisms and identification of novel anti-arrhythmic strategies.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/anomalías , Cardiopatías Congénitas , Ventrículos Cardíacos/fisiopatología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Antiarrítmicos/farmacología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Sistema de Conducción Cardíaco/fisiopatología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Fenotipo , Quinidina/farmacología , Conejos
12.
J Mol Cell Cardiol ; 133: 138-147, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31201798

RESUMEN

BACKGROUND: Sepsis-induced cardiomyopathy contributes to the high mortality of septic shock in critically ill patients. Since the underlying mechanisms are incompletely understood, we hypothesized that sepsis-induced impairment of sirtuin 3 (SIRT3) activity contributes to the development of septic cardiomyopathy. METHODS AND RESULTS: Treatment of mice with lipopolysaccharide (LPS) for 6 h resulted in myocardial NAD+ depletion and increased mitochondrial protein acetylation, indicating impaired myocardial SIRT3 activity due to NAD+ depletion. LPS treatment also resulted in impaired cardiac output in isolated working hearts, indicating endotoxemia-induced cardiomyopathy. Maintaining normal myocardial NAD+ levels in LPS-treated mice by Poly(ADP-ribose)polymerase 1 (PARP1) deletion prevented cardiac dysfunction, whereas additional SIRT3 deficiency blunted this beneficial effect, indicating that impaired SIRT3 activity contributes to cardiac dysfunction in endotoxemia. Measurements of mitochondrial ATP synthesis suggest that LPS-induced contractile dysfunction may result from cardiac energy depletion due to impaired SIRT3 activity. Pharmacological inhibition of mitochondrial calpains using MDL28170 normalized LPS-induced cleavage of the ATP5A1 subunit of ATP synthase and normalized contractile dysfunction, suggesting that cardiac energy depletion may result from calpain-mediated cleavage of ATP5A1. These beneficial effects were completely blunted by SIRT3 deficiency. Finally, a gene set enrichment analysis of hearts of patients with septic, ischemic or dilated cardiomyopathy revealed a sepsis-specific suppression of SIRT3 deacetylation targets, including ATP5A1, indicating a functional relevance of SIRT3-dependent pathways in human sepsis. CONCLUSIONS: Impaired SIRT3 activity may mediate cardiac dysfunction in endotoxemia by facilitating calpain-mediated disruption of ATP synthesis, suggesting SIRT3 activation as a potential therapeutic strategy to treat septic cardiomyopathy.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Calpaína/metabolismo , Endotoxemia/complicaciones , Cardiopatías/etiología , Cardiopatías/metabolismo , Sirtuina 3/metabolismo , Animales , Calpaína/antagonistas & inhibidores , Citocinas , Modelos Animales de Enfermedad , Endotoxemia/etiología , Activación Enzimática , Cardiopatías/fisiopatología , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Sepsis/complicaciones , Sepsis/etiología , Transducción de Señal , Sirtuina 3/genética
14.
Europace ; 21(7): 1126-1138, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938413

RESUMEN

AIMS: Women with long QT syndrome 2 (LQT2) have a particularly high postpartal risk for lethal arrhythmias. We aimed at investigating whether oxytocin and prolactin contribute to this risk by affecting repolarization. METHODS AND RESULTS: In female transgenic LQT2 rabbits (HERG-G628S, loss of IKr), hormone effects on QT/action potential duration (APD) were assessed (0.2-200 ng/L). Hormone effects (200 ng/L) on ion currents and cellular APD were determined in transfected cells and LQT2 cardiomyocytes. Hormone effects on ion channels were assessed with qPCR and western blot. Experimental data were incorporated into in silico models to determine the pro-arrhythmic potential. Oxytocin prolonged QTc and steepened QT/RR-slope in vivo and prolonged ex vivo APD75 in LQT2 hearts. Prolactin prolonged APD75 at high concentrations. As underlying mechanisms, we identified an oxytocin- and prolactin-induced acute reduction of IKs-tail and IKs-steady (-25.5%, oxytocin; -13.3%, prolactin, P < 0.05) in CHO-cells and LQT2-cardiomyocytes. IKr currents were not altered. This oxytocin-/prolactin-induced IKs reduction caused APD90 prolongation (+11.9%/+13%, P < 0.05) in the context of reduced/absent IKr in LQT2 cardiomyocytes. Hormones had no effect on IK1 and ICa,L in cardiomyocytes. Protein and mRNA levels of CACNA1C/Cav1.2 and RyR2 were enhanced by oxytocin and prolactin. Incorporating these hormone effects into computational models resulted in reduced repolarization reserve and increased propensity to pro-arrhythmic permanent depolarization, lack of capture and early afterdepolarizations formation. CONCLUSIONS: Postpartum hormones oxytocin and prolactin prolong QT/APD in LQT2 by reducing IKs and by increasing Cav1.2 and RyR2 expression/transcription, thereby contributing to the increased postpartal arrhythmic risk in LQT2.


Asunto(s)
Sistema de Conducción Cardíaco/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Oxitocina/metabolismo , Prolactina/metabolismo , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Femenino , Miocitos Cardíacos/efectos de los fármacos , Periodo Posparto , Conejos
15.
Basic Res Cardiol ; 113(6): 45, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30338362

RESUMEN

Sterile inflammation of visceral fat, provoked by dying adipocytes, links the metabolic syndrome to cardiovascular disease. Danger-associated molecular patterns, such as adenosine triphosphate (ATP), are released by activated or dying cells and orchestrate leukocyte infiltration and inflammation via the purinergic receptor P2Y2. The gene expression of ATP receptor P2Y2 did not change in several tissues in the course of obesity, but was increased within epididymal fat. Adipose tissue from P2Y 2-/- mice consuming high-fat diet (HFD) contained less crown-like structures with a reduced frequency of adipose tissue macrophages (ATMs). This was likely due to decreased leukocyte migration because of missing VCAM-1 exposition on P2Y2 deficient hypertrophic adipose tissue endothelial cells. Accordingly, P2Y 2-/- mice showed blunted traits of the metabolic syndrome: they gained less weight compared to P2Y 2+/+ controls, while intake of food and movement behaviour remained unchanged. Liver and adipose tissue were smaller in P2Y 2-/- animals. Insulin tolerance testing (ITT) performed in obese P2Y 2-/- mice revealed a better insulin sensitivity as well as lower plasma C-peptide and cholesterol levels. We demonstrate that interfering with somatic P2Y2 signalling prevents excessive immune cell deposition in diet-induced obesity (DIO), both attenuating adipose tissue inflammation and ameliorating the metabolic phenotype. Thus, blocking the P2Y2 cascade may be a promising strategy to limit metabolic disease and its sequelae.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Síndrome Metabólico/patología , Obesidad/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa , Inflamación/metabolismo , Inflamación/patología , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Molécula 1 de Adhesión Celular Vascular/metabolismo
16.
Basic Res Cardiol ; 113(1): 8, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29288409

RESUMEN

Genetic factors are known to modulate cardiac susceptibility to ventricular hypertrophy and failure. To determine how strain influences the transcriptional response to pressure overload-induced heart failure (HF) and which of these changes accurately reflect the human disease, we analyzed the myocardial transcriptional profile of mouse strains with high (C57BL/6J) and low (129S1/SvImJ) susceptibility for HF development, which we compared to that of human failing hearts. Following transverse aortic constriction (TAC), C57BL/6J mice developed overt HF while 129S1/SvImJ did not. Despite a milder aortic constriction, impairment of ejection fraction and ventricular remodeling (dilation, fibrosis) was more pronounced in C57BL/6J mice. Similarly, changes in myocardial gene expression were more robust in C57BL/6J (461 genes) compared to 129S1/SvImJ mice (71 genes). When comparing these patterns to human dilated cardiomyopathy (1344 genes), C57BL/6J mice tightly grouped to human hearts. Overlay and bioinformatic analysis of the transcriptional profiles of C57BL/6J mice and human failing hearts identified six co-regulated genes (POSTN, CTGF, FN1, LOX, NOX4, TGFB2) with established link to HF development. Pathway enrichment analysis identified angiotensin and IGF-1 signaling as most enriched putative upstream regulator and pathway, respectively, shared between TAC-induced HF in C57BL/6J mice and in human failing hearts. TAC-induced heart failure in C57BL/6J mice more closely reflects the gene expression pattern of human dilated cardiomyopathy compared to 129S1/SvImJ mice. Unbiased as well as targeted gene expression and pathway analyses identified periostin, angiotensin signaling, and IGF-1 signaling as potential causes of increased HF susceptibility in C57BL/6J mice and as potentially useful drug targets for HF treatment.


Asunto(s)
Cardiomiopatía Dilatada/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Hipertrofia Ventricular Izquierda/genética , Función Ventricular Izquierda/genética , Animales , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/fisiopatología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Fenotipo , Especificidad de la Especie , Transcriptoma , Remodelación Ventricular/genética
17.
J Thromb Thrombolysis ; 46(1): 102-112, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29774488

RESUMEN

Sirtuin 3 is a nicotinamide adenine dinucleotide dependent mitochondrial deacetylase that governs mitochondrial metabolism and oxidative defense. The demise in myocardial function following myocardial ischemia has been associated with mitochondrial dysfunction. Sirt3 maintains myocardial contractile function and protects from cardiac hypertrophy. The role of Sirt3 in ischemia is controversial. Our objective was to understand, under what circumstances Sirt3 is protective in different facets of ischemia, using an in vitro proof-of-concept approach based on simulated ischemia in cultured cardiomyoblasts. Cultured H9c2 cardiomyoblasts were subjected to hypoxia and/or serum deprivation, the combination of which we refer to as simulated ischemia. Apoptosis, as assessed by Annexin V staining in life-cell imaging and propidium-iodide inclusion in flow cytometry, was enhanced following simulated ischemia. Interestingly, serum deprivation was a stronger trigger of apoptosis than hypoxia. Knockdown of Sirt3 further increased apoptosis upon serum deprivation, whereas no such effect occurred upon additional hypoxia. Similarly, only upon serum deprivation but not upon simulated ischemia, silencing of Sirt3 led to a deterioration of mitochondrial function in extracellular flux analysis. In the absence of oxygen these Sirt3-dependent effects were abolished. These data indicate, that Sirt3-mediated myocardial protection is oxygen-dependent. Thus, mitochondrial respiration takes center-stage in Sirt3-dependent prevention of stress-induced myocardial damage.


Asunto(s)
Mioblastos/citología , Oxígeno/farmacología , Sustancias Protectoras/farmacología , Sirtuina 3/farmacología , Línea Celular , Respiración de la Célula , Humanos , Miocardio/metabolismo , Miocitos Cardíacos
18.
Circ Res ; 117(7): 622-33, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26195221

RESUMEN

RATIONALE: In chronic heart failure, increased adrenergic activation contributes to structural remodeling and altered gene expression. Although adrenergic signaling alters histone modifications, it is unknown, whether it also affects other epigenetic processes, including DNA methylation and its recognition. OBJECTIVE: The aim of this study was to identify the mechanism of regulation of the methyl-CpG-binding protein 2 (MeCP2) and its functional significance during cardiac pressure overload and unloading. METHODS AND RESULTS: MeCP2 was identified as a reversibly repressed gene in mouse hearts after transverse aortic constriction and was normalized after removal of the constriction. Similarly, MeCP2 repression in human failing hearts resolved after unloading by a left ventricular assist device. The cluster miR-212/132 was upregulated after transverse aortic constriction or on activation of α1- and ß1-adrenoceptors and miR-212/132 led to repression of MeCP2. Prevention of MeCP2 repression by a cardiomyocyte-specific, doxycycline-regulatable transgenic mouse model aggravated cardiac hypertrophy, fibrosis, and contractile dysfunction after transverse aortic constriction. Ablation of MeCP2 in cardiomyocytes facilitated recovery of failing hearts after reversible transverse aortic constriction. Genome-wide expression analysis, chromatin immunoprecipitation experiments, and DNA methylation analysis identified mitochondrial genes and their transcriptional regulators as MeCP2 target genes. Coincident with its repression, MeCP2 was removed from its target genes, whereas DNA methylation of MeCP2 target genes remained stable during pressure overload. CONCLUSIONS: These data connect adrenergic activation with a microRNA-MeCP2 epigenetic pathway that is important for cardiac adaptation during the development and recovery from heart failure.


Asunto(s)
Adaptación Fisiológica/fisiología , Epigénesis Genética/fisiología , Insuficiencia Cardíaca/metabolismo , Proteína 2 de Unión a Metil-CpG/biosíntesis , Receptores Adrenérgicos/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Enfermedad Crónica , Insuficiencia Cardíaca/genética , Humanos , Proteína 2 de Unión a Metil-CpG/antagonistas & inhibidores , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Ratas , Receptores Adrenérgicos/genética
19.
Heart Fail Rev ; 21(5): 519-28, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27295248

RESUMEN

Sirtuins (SIRTs) are NAD(+)-dependent enzymes that catalyze deacylation of protein lysine residues. In mammals, seven sirtuins have been identified, SIRT1-7. SIRT3-5 are mainly or exclusively localized within mitochondria and mainly participate in the regulation of energy metabolic pathways. Since mitochondrial ATP regeneration is inevitably linked to the maintenance of cardiac pump function, it is not surprising that recent studies revealed a role for mitochondrial sirtuins in the regulation of myocardial energetics and function. In addition, mitochondrial sirtuins modulate the extent of myocardial ischemia reperfusion injury and the development of cardiac hypertrophy and failure. Thus, targeting mitochondrial sirtuins has been proposed as a novel approach to improve myocardial mitochondrial energetics, which is frequently impaired in cardiac disease and considered an important underlying cause contributing to several cardiac pathologies, including myocardial ischemia reperfusion injury and heart failure. In the current review, we present and discuss the available literature on mitochondrial sirtuins and their potential roles in cardiac physiology and disease.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Sirtuina 3/fisiología , Animales , Metabolismo Energético , Insuficiencia Cardíaca/etiología , Humanos , Ratones , Daño por Reperfusión Miocárdica/etiología , Sirtuina 3/genética
20.
Can J Physiol Pharmacol ; 94(1): 72-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26524632

RESUMEN

Lack of the mitochondrial deacetylase sirtuin 3 (SIRT3) impairs mitochondrial function and increases the susceptibility to induction of the mitochondrial permeability transition pore. Because these alterations contribute to myocardial ischemia-reperfusion (IR) injury, we hypothesized that SIRT3 deficiency may increase cardiac injury following myocardial IR. Hearts of 10-week-old mice were perfused in the isolated working mode and subjected to 17.5 min of global no-flow ischemia, followed by 30 min of reperfusion. Measurements before ischemia revealed a decrease in cardiac power (-20%) and rate pressure product (-15%) in SIRT3(-/-) mice. Mitochondrial state 3 respiration (-15%), ATP synthesis (-39%), and ATP/O ratios (-29%) were decreased in hearts of SIRT3(-/-) mice. However, percent recovery of cardiac power (WT 94% ± 9%; SIRT3(-/-) 89% ± 9%) and rate pressure product (WT 89% ± 16%; SIRT3(-/-) 96% ± 3%) following IR was similar in both groups. Myocardial infarct size was not increased in SIRT3(-/-) mice following permanent ligation of the left anterior descending coronary artery (LAD). Left ventricular pressure and dP/dtmax, and mitochondrial respiration and ATP synthesis were not different between groups following LAD ligation. Thus, despite pre-existing defects in cardiac function and mitochondrial respiratory capacity in SIRT3(-/-) mice, SIRT3 deficiency does not additionally impair cardiac function following IR or following myocardial infarction.


Asunto(s)
Daño por Reperfusión Miocárdica/fisiopatología , Sirtuina 3/deficiencia , Adenosina Trifosfato/biosíntesis , Animales , Metabolismo Energético , Técnicas In Vitro , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Contracción Miocárdica , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/genética , Consumo de Oxígeno , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Sirtuina 3/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA