Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(5): 767-779, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095375

RESUMEN

Sepsis arises from diverse and incompletely understood dysregulated host response processes following infection that leads to life-threatening organ dysfunction. Here we showed that neutrophils and emergency granulopoiesis drove a maladaptive response during sepsis. We generated a whole-blood single-cell multiomic atlas (272,993 cells, n = 39 individuals) of the sepsis immune response that identified populations of immunosuppressive mature and immature neutrophils. In co-culture, CD66b+ sepsis neutrophils inhibited proliferation and activation of CD4+ T cells. Single-cell multiomic mapping of circulating hematopoietic stem and progenitor cells (HSPCs) (29,366 cells, n = 27) indicated altered granulopoiesis in patients with sepsis. These features were enriched in a patient subset with poor outcome and a specific sepsis response signature that displayed higher frequencies of IL1R2+ immature neutrophils, epigenetic and transcriptomic signatures of emergency granulopoiesis in HSPCs and STAT3-mediated gene regulation across different infectious etiologies and syndromes. Our findings offer potential therapeutic targets and opportunities for stratified medicine in severe infection.


Asunto(s)
Neutrófilos , Sepsis , Humanos , Hematopoyesis , Células Madre Hematopoyéticas , Regulación de la Expresión Génica
2.
Am J Hum Genet ; 111(8): 1524-1543, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39053458

RESUMEN

Gene misexpression is the aberrant transcription of a gene in a context where it is usually inactive. Despite its known pathological consequences in specific rare diseases, we have a limited understanding of its wider prevalence and mechanisms in humans. To address this, we analyzed gene misexpression in 4,568 whole-blood bulk RNA sequencing samples from INTERVAL study blood donors. We found that while individual misexpression events occur rarely, in aggregate they were found in almost all samples and a third of inactive protein-coding genes. Using 2,821 paired whole-genome and RNA sequencing samples, we identified that misexpression events are enriched in cis for rare structural variants. We established putative mechanisms through which a subset of SVs lead to gene misexpression, including transcriptional readthrough, transcript fusions, and gene inversion. Overall, we develop misexpression as a type of transcriptomic outlier analysis and extend our understanding of the variety of mechanisms by which genetic variants can influence gene expression.


Asunto(s)
Regulación de la Expresión Génica , Humanos , Análisis de Secuencia de ARN , Variación Genética , Variación Estructural del Genoma/genética , Transcriptoma/genética , Donantes de Sangre
3.
Nucleic Acids Res ; 51(D1): D896-D905, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36353986

RESUMEN

Advances in our understanding of the nature of the immune response to SARS-CoV-2 infection, and how this varies within and between individuals, is important in efforts to develop targeted therapies and precision medicine approaches. Here we present a database for the COvid-19 Multi-omics Blood ATlas (COMBAT) project, COMBATdb (https://db.combat.ox.ac.uk). This enables exploration of multi-modal datasets arising from profiling of patients with different severities of illness admitted to hospital in the first phase of the pandemic in the UK prior to vaccination, compared with community cases, healthy controls, and patients with all-cause sepsis and influenza. These data include whole blood transcriptomics, plasma proteomics, epigenomics, single-cell multi-omics, immune repertoire sequencing, flow and mass cytometry, and cohort metadata. COMBATdb provides access to the processed data in a well-defined framework of samples, cell types and genes/proteins that allows exploration across the assayed modalities, with functionality including browse, search, download, calculation and visualisation via shiny apps. This advances the ability of users to leverage COMBAT datasets to understand the pathogenesis of COVID-19, and the nature of specific and shared features with other infectious diseases.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Multiómica , SARS-CoV-2/genética , Proteómica , Bases de Datos Factuales
4.
Ann Surg ; 279(3): 510-520, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497667

RESUMEN

OBJECTIVE: To describe immune pathways and gene networks altered following major abdominal surgery and to identify transcriptomic patterns associated with postoperative pneumonia. BACKGROUND: Nosocomial infections are a major healthcare challenge, developing in over 20% of patients aged 45 or over undergoing major abdominal surgery, with postoperative pneumonia associated with an almost 5-fold increase in 30-day mortality. METHODS: From a prospective consecutive cohort (n=150) undergoing major abdominal surgery, whole-blood RNA was collected preoperatively and at 3 time-points postoperatively (2-6, 24, and 48 h). Twelve patients diagnosed with postoperative pneumonia and 27 matched patients remaining infection-free were identified for analysis with RNA-sequencing. RESULTS: Compared to preoperative sampling, 3639 genes were upregulated and 5043 downregulated at 2 to 6 hours. Pathway analysis demonstrated innate-immune activation with neutrophil degranulation and Toll-like-receptor signaling upregulation alongside adaptive-immune suppression. Cell-type deconvolution of preoperative RNA-sequencing revealed elevated S100A8/9-high neutrophils alongside reduced naïve CD4 T-cells in those later developing pneumonia. Preoperatively, a gene-signature characteristic of neutrophil degranulation was associated with postoperative pneumonia acquisition ( P =0.00092). A previously reported Sepsis Response Signature (SRSq) score, reflecting neutrophil dysfunction and a more dysregulated host response, at 48 hours postoperatively, differed between patients subsequently developing pneumonia and those remaining infection-free ( P =0.045). Analysis of the novel neutrophil gene-signature and SRSq scores in independent major abdominal surgery and polytrauma cohorts indicated good predictive performance in identifying patients suffering later infection. CONCLUSIONS: Major abdominal surgery acutely upregulates innate-immune pathways while simultaneously suppressing adaptive-immune pathways. This is more prominent in patients developing postoperative pneumonia. Preoperative transcriptomic signatures characteristic of neutrophil degranulation and postoperative SRSq scores may be useful predictors of subsequent pneumonia risk.


Asunto(s)
Neumonía , Humanos , Estudios Prospectivos , Neumonía/diagnóstico , Transcriptoma , Perfilación de la Expresión Génica , ARN
5.
Thorax ; 79(6): 515-523, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38471792

RESUMEN

RATIONALE: Heterogeneity of the host response within sepsis, acute respiratory distress syndrome (ARDS) and more widely critical illness, limits discovery and targeting of immunomodulatory therapies. Clustering approaches using clinical and circulating biomarkers have defined hyper-inflammatory and hypo-inflammatory subphenotypes in ARDS associated with differential treatment response. It is unknown if similar subphenotypes exist in sepsis populations where leucocyte transcriptomic-defined subphenotypes have been reported. OBJECTIVES: We investigated whether inflammatory clusters based on cytokine protein abundance were seen in sepsis, and the relationships with previously described transcriptomic subphenotypes. METHODS: Hierarchical cluster and latent class analysis were applied to an observational study (UK Genomic Advances in Sepsis (GAinS)) (n=124 patients) and two clinical trial datasets (VANISH, n=155 and LeoPARDS, n=484) in which the plasma protein abundance of 65, 21, 11 circulating cytokines, cytokine receptors and regulators were quantified. Clinical features, outcomes, response to trial treatments and assignment to transcriptomic subphenotypes were compared between inflammatory clusters. MEASUREMENTS AND MAIN RESULTS: We identified two (UK GAinS, VANISH) or three (LeoPARDS) inflammatory clusters. A group with high levels of pro-inflammatory and anti-inflammatory cytokines was seen that was associated with worse organ dysfunction and survival. No interaction between inflammatory clusters and trial treatment response was found. We found variable overlap of inflammatory clusters and leucocyte transcriptomic subphenotypes. CONCLUSIONS: These findings demonstrate that differences in response at the level of cytokine biology show clustering related to severity, but not treatment response, and may provide complementary information to transcriptomic sepsis subphenotypes. TRIAL REGISTRATION NUMBER: ISRCTN20769191, ISRCTN12776039.


Asunto(s)
Citocinas , Fenotipo , Sepsis , Transcriptoma , Humanos , Sepsis/sangre , Sepsis/genética , Masculino , Citocinas/sangre , Femenino , Persona de Mediana Edad , Leucocitos/metabolismo , Biomarcadores/sangre , Anciano , Análisis por Conglomerados , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Resultado del Tratamiento
6.
Eur Respir J ; 59(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34446464

RESUMEN

BACKGROUND: Gram-positive and Gram-negative bacteria are the most common causative pathogens in community-acquired pneumonia (CAP) on the intensive care unit (ICU). The aim of this study was to determine whether the host immune response differs between Gram-positive and Gram-negative CAP upon ICU admission. METHODS: 16 host response biomarkers providing insight into pathophysiological mechanisms implicated in sepsis and blood leukocyte transcriptomes were analysed in patients with CAP upon ICU admission in two tertiary hospitals in the Netherlands. RESULTS: 309 patients with CAP with a definite or probable likelihood (determined by predefined criteria) were included. A causative pathogen was determined in 74.4% of admissions. Patients admitted with Gram-positive CAP (n=90) were not different from those admitted with Gram-negative CAP (n=75) regarding demographics, chronic comorbidities, severity of disease and mortality. Host response biomarkers reflective of systemic inflammation, coagulation activation and endothelial cell function, as well as blood leukocyte transcriptomes, were largely similar between Gram-positive and Gram-negative CAP. Blood leukocyte transcriptomes were also similar in Gram-positive and Gram-negative CAP in two independent validation cohorts. On a pathogen-specific level, Streptococcus pneumoniae and Escherichia coli induced the most distinct host immune response. CONCLUSION: Outcome and host response are similar in critically ill patients with CAP due to Gram-positive bacteria compared with Gram-negative bacteria.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía Bacteriana , Neumonía , Antibacterianos/uso terapéutico , Infecciones Comunitarias Adquiridas/genética , Infecciones Comunitarias Adquiridas/microbiología , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Leucocitos , Neumonía/tratamiento farmacológico , Neumonía Bacteriana/tratamiento farmacológico , Transcriptoma
7.
Ann Neurol ; 90(3): 455-463, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34279044

RESUMEN

OBJECTIVE: The purpose of this study was to identify disease relevant genes and explore underlying immunological mechanisms that contribute to early and late onset forms of myasthenia gravis. METHODS: We used a novel genomic methodology to integrate genomewide association study (GWAS) findings in myasthenia gravis with cell-type specific information, such as gene expression patterns and promotor-enhancer interactions, in order to identify disease-relevant genes. Subsequently, we conducted additional genomic investigations, including an expression quantitative analysis of 313 healthy people to provide mechanistic insights. RESULTS: We identified several genes that were specifically linked to early onset myasthenia gravis including TNIP1, ORMDL3, GSDMB, and TRAF3. We showed that regulators of toll-like receptor 4 signaling were enriched among these early onset disease genes (fold enrichment = 3.85, p = 6.4 × 10-3 ). In contrast, T-cell regulators CD28 and CTLA4 were exclusively linked to late onset disease. We identified 2 causal genetic variants (rs231770 and rs231735; posterior probability = 0.98 and 0.91) near the CTLA4 gene. Subsequently, we demonstrated that these causal variants result in low expression of CTLA4 (rho = -0.66, p = 1.28 × 10-38 and rho = -0.52, p = 7.01 × 10-22 , for rs231735 and rs231770, respectively). INTERPRETATION: The disease-relevant genes identified in this study are a unique resource for many disciplines, including clinicians, scientists, and the pharmaceutical industry. The distinct immunological pathways linked to early and late onset myasthenia gravis carry important implications for drug repurposing opportunities and for future studies of drug development. ANN NEUROL 2021;90:455-463.


Asunto(s)
Variación Genética/fisiología , Estudio de Asociación del Genoma Completo/métodos , Inmunidad Innata/fisiología , Miastenia Gravis/genética , Miastenia Gravis/inmunología , Polimorfismo de Nucleótido Simple/fisiología , Adulto , Edad de Inicio , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miastenia Gravis/diagnóstico
8.
Mol Biol Evol ; 36(12): 2668-2681, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290972

RESUMEN

The recent emergence and spread of X-linked segregation distorters-called "Paris" system-in the worldwide species Drosophila simulans has elicited the selection of drive-resistant Y chromosomes. Here, we investigate the evolutionary history of 386 Y chromosomes originating from 29 population samples collected over a period of 20 years, showing a wide continuum of phenotypes when tested against the Paris distorters, from high sensitivity to complete resistance (males sire ∼95% to ∼40% female progeny). Analyzing around 13 kb of Y-linked gene sequences in a representative subset of nine Y chromosomes, we identified only three polymorphic sites resulting in three haplotypes. Remarkably, one of the haplotypes is associated with resistance. This haplotype is fixed in all samples from Sub-Saharan Africa, the region of origin of the drivers. Exceptionally, with the spread of the drivers in Egypt and Morocco, we were able to record the replacement of the sensitive lineage by the resistant haplotype in real time, within only a few years. In addition, we performed in situ hybridization, using satellite DNA probes, on a subset of 21 Y chromosomes from six locations. In contrast to the low molecular polymorphism, this revealed extensive structural variation suggestive of rapid evolution, either neutral or adaptive. Moreover, our results show that intragenomic conflicts can drive astonishingly rapid replacement of Y chromosomes and suggest that the emergence of Paris segregation distorters in East Africa occurred less than half a century ago.


Asunto(s)
Drosophila/genética , Evolución Molecular , Cromosoma Y , Animales , Femenino , Haplotipos , Masculino , Meiosis , Filogeografía , Polimorfismo Genético , Razón de Masculinidad
9.
Am J Respir Crit Care Med ; 199(8): 980-986, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30365341

RESUMEN

RATIONALE: There remains uncertainty about the role of corticosteroids in sepsis with clear beneficial effects on shock duration, but conflicting survival effects. Two transcriptomic sepsis response signatures (SRSs) have been identified. SRS1 is relatively immunosuppressed, whereas SRS2 is relatively immunocompetent. OBJECTIVES: We aimed to categorize patients based on SRS endotypes to determine if these profiles influenced response to either norepinephrine or vasopressin, or to corticosteroids in septic shock. METHODS: A post hoc analysis was performed of a double-blind, randomized clinical trial in septic shock (VANISH [Vasopressin vs. Norepinephrine as Initial Therapy in Septic Shock]). Patients were included within 6 hours of onset of shock and were randomized to receive norepinephrine or vasopressin followed by hydrocortisone or placebo. Genome-wide gene expression profiling was performed and SRS endotype was determined by a previously established model using seven discriminant genes. MEASUREMENTS AND MAIN RESULTS: Samples were available from 176 patients: 83 SRS1 and 93 SRS2. There was no significant interaction between SRS group and vasopressor assignment (P = 0.50). However, there was an interaction between assignment to hydrocortisone or placebo, and SRS endotype (P = 0.02). Hydrocortisone use was associated with increased mortality in those with an SRS2 phenotype (odds ratio = 7.9; 95% confidence interval = 1.6-39.9). CONCLUSIONS: Transcriptomic profile at onset of septic shock was associated with response to corticosteroids. Those with the immunocompetent SRS2 endotype had significantly higher mortality when given corticosteroids compared with placebo. Clinical trial registered with www.clinicaltrials.gov (ISRCTN 20769191).


Asunto(s)
Perfilación de la Expresión Génica , Hidrocortisona/uso terapéutico , Sepsis/tratamiento farmacológico , Transcriptoma/efectos de los fármacos , Anciano , Método Doble Ciego , Femenino , Humanos , Inmunocompetencia , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Norepinefrina/uso terapéutico , Fenotipo , Sepsis/metabolismo , Sepsis/mortalidad , Choque Séptico/tratamiento farmacológico , Choque Séptico/metabolismo , Choque Séptico/mortalidad , Análisis de Supervivencia , Vasopresinas/uso terapéutico
10.
Am J Respir Crit Care Med ; 196(3): 328-339, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28036233

RESUMEN

RATIONALE: Heterogeneity in the septic response has hindered efforts to understand pathophysiology and develop targeted therapies. Source of infection, with different causative organisms and temporal changes, might influence this heterogeneity. OBJECTIVES: To investigate individual and temporal variations in the transcriptomic response to sepsis due to fecal peritonitis, and to compare these with the same parameters in community-acquired pneumonia. METHODS: We performed genome-wide gene expression profiling in peripheral blood leukocytes of adult patients admitted to intensive care with sepsis due to fecal peritonitis (n = 117) or community-acquired pneumonia (n = 126), and of control subjects without sepsis (n = 10). MEASUREMENTS AND MAIN RESULTS: A substantial portion of the transcribed genome (18%) was differentially expressed compared with that of control subjects, independent of source of infection, with eukaryotic initiation factor 2 signaling being the most enriched canonical pathway. We identified two sepsis response signature (SRS) subgroups in fecal peritonitis associated with early mortality (P = 0.01; hazard ratio, 4.78). We defined gene sets predictive of SRS group, and serial sampling demonstrated that subgroup membership is dynamic during intensive care unit admission. We found that SRS is the major predictor of transcriptomic variation; a small number of genes (n = 263) were differentially regulated according to the source of infection, enriched for IFN signaling and antigen presentation. We define temporal changes in gene expression from disease onset involving phagosome formation as well as natural killer cell and IL-3 signaling. CONCLUSIONS: The majority of the sepsis transcriptomic response is independent of the source of infection and includes signatures reflecting immune response state and prognosis. A modest number of genes show evidence of specificity. Our findings highlight opportunities for patient stratification and precision medicine in sepsis.


Asunto(s)
Peritonitis/genética , Neumonía/genética , Sepsis/genética , Transcriptoma/genética , Anciano , Infecciones Comunitarias Adquiridas/sangre , Infecciones Comunitarias Adquiridas/genética , Heces , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad , Peritonitis/sangre , Neumonía/sangre , Estudios Prospectivos , Sepsis/sangre
11.
Cell Genom ; 4(7): 100587, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38897207

RESUMEN

Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.


Asunto(s)
Redes Reguladoras de Genes , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Sepsis , Humanos , Sepsis/genética , Redes Reguladoras de Genes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Masculino , Femenino , Transcriptoma , Persona de Mediana Edad , Adulto , Genotipo
12.
Intensive Care Med ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39432104

RESUMEN

Medical progress is reflected in the advance from broad clinical syndromes to mechanistically coherent diagnoses. By this metric, research in sepsis is far behind other areas of medicine-the word itself conflates multiple different disease mechanisms, whilst excluding noninfectious syndromes (e.g., trauma, pancreatitis) with similar pathogenesis. New technologies, both for deep phenotyping and data analysis, offer the capability to define biological states with extreme depth. Progress is limited by a fundamental problem: observed groupings of patients lacking shared causal mechanisms are very poor predictors of response to treatment. Here, we discuss concrete steps to identify groups of patients reflecting archetypes of disease with shared underlying mechanisms of pathogenesis. Recent evidence demonstrates the role of causal inference from host genetics and randomised clinical trials to inform stratification analyses. Genetic studies can directly illuminate drug targets, but in addition they create a reservoir of statistical power that can be divided many times among potential patient subgroups to test for mechanistic coherence, accelerating discovery of modifiable mechanisms for testing in trials. Novel approaches, such as subgroup identification in-flight in clinical trials, will improve efficiency. Within the next decade, we expect ongoing large-scale collaborative projects to discover and test therapeutically relevant sepsis archetypes.

13.
Sci Transl Med ; 16(750): eadh0185, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838133

RESUMEN

Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.


Asunto(s)
Proteoma , Sepsis , Humanos , Sepsis/sangre , Proteoma/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteómica/métodos , Masculino , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Femenino , Persona de Mediana Edad , Espectrometría de Masas en Tándem/métodos
14.
Nat Commun ; 13(1): 7947, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572683

RESUMEN

Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals. Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis. COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.


Asunto(s)
COVID-19 , Humanos , COVID-19/patología , Monocitos/metabolismo , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Inmunidad , Inmunidad Innata
15.
Lancet Digit Health ; 4(10): e705-e716, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038496

RESUMEN

BACKGROUND: Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19. METHODS: For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes. FINDINGS: Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2·97 [95% CI 1·43-6·27], p=0·0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1·89 [95% CI 1·17-3·20] per SD, p=0·012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [≥6·99] vs low [<6·99] C19-RS; hazard ratio [HR] 3·31 [95% CI 1·49-7·33], p=0·0033; and 2·58 [1·10-6·05], p=0·028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8·24 (95% CI 2·16-31·36, p=0·0019) in patients who received no dexamethasone treatment, but 2·27 (0·69-7·55, p=0·18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0·61, p=0·00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways. INTERPRETATION: Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. FUNDING: Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Angiografía , Inteligencia Artificial , COVID-19/diagnóstico por imagen , Citocinas , Humanos , Inflamación/diagnóstico por imagen , Estudios Prospectivos , Medicina Estatal , Tomografía Computarizada por Rayos X
16.
Sci Transl Med ; 14(669): eabq4433, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322631

RESUMEN

Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Sepsis , Adulto , Humanos , Niño , Perfilación de la Expresión Génica , Sepsis/genética , Transcriptoma/genética
17.
Sci Rep ; 10(1): 9838, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555213

RESUMEN

Epstein-Barr virus (EBV) reactivation is common in sepsis patients but the extent and nature of this remains unresolved. We sought to determine the incidence and correlates of EBV-positivity in a large sepsis cohort. We also hypothesised that EBV reactivation would be increased in patients in whom relative immunosuppression was the major feature of their sepsis response. To identify such patients we aimed to use knowledge of sepsis response subphenotypes based on transcriptomic studies of circulating leukocytes, specifically patients with a Sepsis Response Signature endotype (SRS1) that we have previously shown to be associated with increased mortality and features of immunosuppression. We assayed EBV from the plasma of intensive care unit (ICU) patients with sepsis due to community-acquired pneumonia. In total 730 patients were evaluated by targeted metagenomics (n = 573 patients), digital droplet PCR (n = 565), or both (n = 408). We had previously analysed gene expression in peripheral blood leukocytes for a subset of individuals (n = 390). We observed a 37% incidence of EBV-positivity. EBV reactivation was associated with longer ICU stay (12.9 vs 9.2 days; p = 0.004) and increased organ failure (day 1 SOFA score 6.9 vs 5.9; p = 0.00011). EBV reactivation was associated with the relatively immunosuppressed SRS1 endotype (p = 0.014) and differential expression of a small number of biologically relevant genes. These findings are consistent with the hypothesis that viral reactivation in sepsis is a consequence of immune compromise and is associated with increasing severity of illness although further mechanistic studies are required to definitively illustrate cause and effect.


Asunto(s)
Herpesvirus Humano 4/fisiología , Huésped Inmunocomprometido , Neumonía/complicaciones , Sepsis/mortalidad , Sepsis/virología , Transcriptoma , Activación Viral , Adolescente , Adulto , Anciano , Infecciones Comunitarias Adquiridas/complicaciones , Femenino , Humanos , Unidades de Cuidados Intensivos , Tiempo de Internación , Masculino , Metagenómica , Persona de Mediana Edad , Sepsis/complicaciones , Sepsis/genética , Adulto Joven
18.
Nat Genet ; 51(7): 1082-1091, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31253980

RESUMEN

Most candidate drugs currently fail later-stage clinical trials, largely due to poor prediction of efficacy on early target selection1. Drug targets with genetic support are more likely to be therapeutically valid2,3, but the translational use of genome-scale data such as from genome-wide association studies for drug target discovery in complex diseases remains challenging4-6. Here, we show that integration of functional genomic and immune-related annotations, together with knowledge of network connectivity, maximizes the informativeness of genetics for target validation, defining the target prioritization landscape for 30 immune traits at the gene and pathway level. We demonstrate how our genetics-led drug target prioritization approach (the priority index) successfully identifies current therapeutics, predicts activity in high-throughput cellular screens (including L1000, CRISPR, mutagenesis and patient-derived cell assays), enables prioritization of under-explored targets and allows for determination of target-level trait relationships. The priority index is an open-access, scalable system accelerating early-stage drug target selection for immune-mediated disease.


Asunto(s)
Artritis Reumatoide/genética , Descubrimiento de Drogas , Redes Reguladoras de Genes , Genoma Humano , Inmunidad Innata/genética , Sitios de Carácter Cuantitativo , Selección Genética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
19.
Nat Commun ; 9(1): 694, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449546

RESUMEN

Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.


Asunto(s)
Biomarcadores/sangre , Infecciones Comunitarias Adquiridas/mortalidad , Infección Hospitalaria/mortalidad , Sepsis/sangre , Sepsis/mortalidad , Perfilación de la Expresión Génica , Humanos , Modelos Teóricos , Pronóstico , Sepsis/genética , Índice de Severidad de la Enfermedad
20.
Lancet Respir Med ; 5(10): 816-826, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28864056

RESUMEN

BACKGROUND: Host responses during sepsis are highly heterogeneous, which hampers the identification of patients at high risk of mortality and their selection for targeted therapies. In this study, we aimed to identify biologically relevant molecular endotypes in patients with sepsis. METHODS: This was a prospective observational cohort study that included consecutive patients admitted for sepsis to two intensive care units (ICUs) in the Netherlands between Jan 1, 2011, and July 20, 2012 (discovery and first validation cohorts) and patients admitted with sepsis due to community-acquired pneumonia to 29 ICUs in the UK (second validation cohort). We generated genome-wide blood gene expression profiles from admission samples and analysed them by unsupervised consensus clustering and machine learning. The primary objective of this study was to establish endotypes for patients with sepsis, and assess the association of these endotypes with clinical traits and survival outcomes. We also established candidate biomarkers for the endotypes to allow identification of patient endotypes in clinical practice. FINDINGS: The discovery cohort had 306 patients, the first validation cohort had 216, and the second validation cohort had 265 patients. Four molecular endotypes for sepsis, designated Mars1-4, were identified in the discovery cohort, and were associated with 28-day mortality (log-rank p=0·022). In the discovery cohort, the worst outcome was found for patients classified as having a Mars1 endotype, and at 28 days, 35 (39%) of 90 people with a Mars1 endotype had died (hazard ratio [HR] vs all other endotypes 1·86 [95% CI 1·21-2·86]; p=0·0045), compared with 23 (22%) of 105 people with a Mars2 endotype (HR 0·64 [0·40-1·04]; p=0·061), 16 (23%) of 71 people with a Mars3 endotype (HR 0·71 [0·41-1·22]; p=0·19), and 13 (33%) of 40 patients with a Mars4 endotype (HR 1·13 [0·63-2·04]; p=0·69). Analysis of the net reclassification improvement using a combined clinical and endotype model significantly improved risk prediction to 0·33 (0·09-0·58; p=0·008). A 140-gene expression signature reliably stratified patients with sepsis to the four endotypes in both the first and second validation cohorts. Only Mars1 was consistently significantly associated with 28-day mortality across the cohorts. To facilitate possible clinical use, a biomarker was derived for each endotype; BPGM and TAP2 reliably identified patients with a Mars1 endotype. INTERPRETATION: This study provides a method for the molecular classification of patients with sepsis to four different endotypes upon ICU admission. Detection of sepsis endotypes might assist in providing personalised patient management and in selection for trials. FUNDING: Center for Translational Molecular Medicine, Netherlands.


Asunto(s)
Genómica/métodos , Fenotipo , Sepsis/clasificación , Sepsis/genética , Anciano , Infecciones Comunitarias Adquiridas/complicaciones , Infecciones Comunitarias Adquiridas/genética , Femenino , Perfilación de la Expresión Génica , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Neumonía/complicaciones , Neumonía/genética , Estudios Prospectivos , Sepsis/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA