RESUMEN
The Anthropocene epoch is associated with the spreading of metals in the environment increasing oxidative and genotoxic stress on organisms. Interestingly, c. 520 plant species growing on metalliferous soils acquired the capacity to accumulate and tolerate a tremendous amount of nickel in their shoots. The wide phylogenetic distribution of these species suggests that nickel hyperaccumulation evolved multiple times independently. However, the exact nature of these mechanisms and whether they have been recruited convergently in distant species is not known. To address these questions, we have developed a cross-species RNA-Seq approach combining differential gene expression analysis and cluster of orthologous group annotation to identify genes linked to nickel hyperaccumulation in distant plant families. Our analysis reveals candidate orthologous genes encoding convergent function involved in nickel hyperaccumulation, including the biosynthesis of specialized metabolites and cell wall organization. Our data also point out that the high expression of IREG/Ferroportin transporters recurrently emerged as a mechanism involved in nickel hyperaccumulation in plants. We further provide genetic evidence in the hyperaccumulator Noccaea caerulescens for the role of the NcIREG2 transporter in nickel sequestration in vacuoles. Our results provide molecular tools to better understand the mechanisms of nickel hyperaccumulation and study their evolution in plants.
Asunto(s)
Brassicaceae , Níquel , Brassicaceae/genética , Filogenia , RNA-Seq , SueloRESUMEN
The ecological restoration of nickel mining-degraded areas in New Caledonia is strongly limited by low availability of soil mineral nutrients, metal toxicity, and slow growth rates of native plant species. In order to improve plant growth for restoration programs, special attention was paid to interactions between plant and soil microorganisms. In this study, we evaluated the influence of inoculation with Curtobacterium citreum BE isolated from a New Caledonian ultramafic soil on arbuscular mycorrhizal symbiosis and growth of Tetraria comosa, an endemic sedge used in restoration programs. A greenhouse experiment on ultramafic substrate was conducted with an inoculum comprising two arbuscular mycorrhizal fungi (AMF) species isolated from New Caledonian ultramafic soils: Rhizophagus neocaledonicus and Claroideoglomus etunicatum. The effects on plant growth of the AMF and C. citreum BE inoculated separately were not significant, but their co-inoculation significantly enhanced the dry weight of T. comosa compared with the non-inoculated control. These differences were positively correlated with mycorrhizal colonization which was improved by C. citreum BE. Compared with the control, co-inoculated plants were characterized by better mineral nutrition, a higher Ca/Mg ratio, and lower metal translocation. However, for Ca/Mg ratio and metal translocation, there were no significant differences between the effects of AMF inoculation and co-inoculation.
Asunto(s)
Cyperaceae , Micorrizas , Minerales , Nueva Caledonia , Raíces de Plantas , Suelo , Microbiología del SueloRESUMEN
The present study focused on the characterization of 10 Curtobacterium citreum strains isolated from the rhizosphere of pioneer plants growing on ultramafic soils from New Caledonia. Taxonomic status was investigated using a polyphasic approach. Three strains (BE, BB, and AM) were selected in terms of multiple-metal resistance and plant-growth-promoting traits. They were tested on sorghum growing on ultramafic soil and compared with the reference strain C. citreum DSM20528T. To better understand the bacterial mechanisms involved, biosorption, bioaccumulation, and biofilm formation were investigated for the representative strain of the ultramafic cluster (strain BE) versus C. citreum DSM20528T. The polyphasic approach confirmed that all native isolates belong to the same cluster and are C. citreum. The inoculation of sorghum with strains BE and BB significantly reduced Ni content in shoots compared with inoculation with C. citreum DSM20528T and control values. This result was related to the higher Ni tolerance of the ultramafic strains compared with C. citreum DSM20528T. Ni biosorption and bioaccumulation showed that BE exhibited a lower Ni content, which is explained by the ability of this strain to produce exopolysaccharides involved in Ni chelation. We suggested that ultramafic C. citreum strains are more adapted to this substrate than is C. citreum DSM20528T, and their features allow them to enhance plant metal tolerance.
Asunto(s)
Actinomycetales/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología , Microbiología del Suelo , Suelo/química , Actinomycetales/clasificación , Actinomycetales/genética , Actinomycetales/metabolismo , Metales/análisis , Metales/metabolismo , Nueva Caledonia , Plantas/metabolismo , Polisacáridos Bacterianos/metabolismo , Rizosfera , Sorghum/metabolismo , Sorghum/microbiología , Sorghum/fisiologíaRESUMEN
Paraburkholderia ultramafica STM10279T is a metal-tolerant rhizobacterium that promotes plant growth. It was isolated from the roots of Tetraria arundinaceae, a pioneer endemic tropical herb growing on ultramafic soils in New Caledonia. We have recently shown that the main mechanism of metal tolerance of P. ultramafica is related to the production of an acidic exopolysaccharide (EPS). To explore the potential role of this EPS in the plant's environmental adaptation, we first elucidated its structure by employing a combination of chromatography and mass spectrometry techniques. These analyses revealed that the EPS is highly branched and composed of galactosyl (35.8%), glucosyl (33.2%), rhamnosyl (19.5%), mannosyl (7.2%), and glucuronosyl residues (4.4%), similar to the EPS of the Burkholderia cepacia complex known as cepacian. We subsequently conducted greenhouse experiments on Tetraria comosa plantlets inoculated with P. ultramafica or a solution of its EPS during transplanting onto ultramafic substrate. The data showed that the dry weight of T. comosa shoots was 2.5 times higher in the plants treated with the EPS compared to the unexposed plants. In addition, inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis revealed that exposure to the EPS significantly increased Ca, Mg, K, and P uptake as well as K content in roots. In vitro experiments using the Pikovskaya method showed that the EPS was able to solubilize phosphorus. Consistent with the retention of metals in roots and a reduction in shoots, our data revealed a significant decrease in metal translocation factors (TFs) in the plants inoculated with the EPS. These results suggest a beneficial effect of the rhizobacterial EPS on plant growth and abiotic stress mitigation. In addition, the data suggest that the reduced levels of trace metals in plants exposed to P. ultramafica STM10279T are due to metal chelation by the EPS. Further investigations are needed to firmly demonstrate whether this EPS could be used as a biostimulant for plant growth and adaptation to ultramafic soils.
RESUMEN
Mosquito-borne viruses are leading causes of morbidity and mortality in many parts of the world. In recent years, modelling studies have shown that climate change strongly influences vector-borne disease transmission, particularly rising temperatures. As a result, the risk of epidemics has increased, posing a significant public health risk. This review aims to summarize all published laboratory experimental studies carried out over the years to determine the impact of temperature on the transmission of arboviruses by the mosquito vector. Given their high public health importance, we focus on dengue, chikungunya, and Zika viruses, which are transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Following PRISMA guidelines, 34 papers were included in this systematic review. Most studies found that increasing temperatures result in higher rates of infection, dissemination, and transmission of these viruses in mosquitoes, although several studies had differing findings. Overall, the studies reviewed here suggest that rising temperatures due to climate change would alter the vector competence of mosquitoes to increase epidemic risk, but that some critical research gaps remain.
RESUMEN
Dengue virus (DENV) evolutionary dynamics are characterized by frequent DENV genotype/lineage replacements, potentially associated with changes in disease severity and human immunity. New Caledonia (NC) and Cambodia, two contrasted epidemiological settings, respectively experienced a DENV-1 genotype IV to I replacement in 2012 and a DENV-1 genotype I lineage 3-4 replacement in 2005-2007, both followed by a massive dengue outbreak. However, their underlying evolutionary drivers have not been elucidated. Here, we tested the hypothesis that these genotype/lineage switches reflected a higher transmission fitness of the replacing DENV genotype/lineage in the mosquito vector using in vivo competition experiments. For this purpose, field-derived Aedes aegypti from NC and Cambodia were orally challenged with epidemiologically relevant pairs of four DENV-1 genotype I and IV strains from NC or four DENV-1 genotype I lineage 3 and 4 strains from Cambodia, respectively. The relative transmission fitness of each DENV-1 genotype/lineage was measured by quantitative RT-PCR for infection, dissemination, and transmission rates. Results showed a clear transmission fitness advantage of the replacing DENV-1 genotype I from NC within the vector. A similar but more subtle pattern was observed for the DENV-1 lineage 4 replacement in Cambodia. Our results support the hypothesis that vector-driven selection contributed to the DENV-1 genotype/lineage replacements in these two contrasted epidemiological settings, and reinforce the idea that natural selection taking place within the mosquito vector plays an important role in DENV short-term evolutionary dynamics.