Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38148152

RESUMEN

The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.


Asunto(s)
Conectoma , Humanos , Masculino , Adulto , Niño , Femenino , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición
2.
J Cogn Neurosci ; 36(3): 415-434, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060253

RESUMEN

Nearly 50 years of research has focused on faces as a special visual category, especially during development. Yet it remains unclear how spatial patterns of neural similarity of faces and places relate to how information processing supports subsequent recognition of items from these categories. The current study uses representational similarity analysis and functional imaging data from 9- and 10-year-old youth during an emotional n-back task from the Adolescent Brain and Cognitive Development Study 3.0 data release to relate spatial patterns of neural similarity during working memory to subsequent out-of-scanner performance on a recognition memory task. Specifically, we examine how similarities in representations within face categories (neutral, happy, and fearful faces) and representations between visual categories (faces and places) relate to subsequent recognition memory of these visual categories. Although working memory performance was higher for faces than places, subsequent recognition memory was greater for places than faces. Representational similarity analysis revealed category-specific patterns in face-and place-sensitive brain regions (fusiform gyrus, parahippocampal gyrus) compared with a nonsensitive visual region (pericalcarine cortex). Similarity within face categories and dissimilarity between face and place categories in the parahippocampus was related to better recognition of places from the n-back task. Conversely, in the fusiform, similarity within face categories and their relative dissimilarity from places was associated with better recognition of new faces, but not old faces. These findings highlight how the representational distinctiveness of visual categories influence what information is subsequently prioritized in recognition memory during development.


Asunto(s)
Memoria a Corto Plazo , Reconocimiento en Psicología , Adolescente , Humanos , Niño , Encéfalo , Corteza Cerebral , Emociones , Mapeo Encefálico , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos
3.
Neuroimage ; 233: 117975, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33762217

RESUMEN

Shared information content is represented across brains in idiosyncratic functional topographies. Hyperalignment addresses these idiosyncrasies by using neural responses to project individuals' brain data into a common model space while maintaining the geometric relationships between distinct patterns of activity or connectivity. The dimensions of this common model capture functional profiles that are shared across individuals such as cortical response profiles collected during a common time-locked stimulus presentation (e.g. movie viewing) or functional connectivity profiles. Hyperalignment can use either response-based or connectivity-based input data to derive transformations that project individuals' neural data from anatomical space into the common model space. Previously, only response or connectivity profiles were used in the derivation of these transformations. In this study, we developed a new hyperalignment algorithm, hybrid hyperalignment, that derives transformations based on both response-based and connectivity-based information. We used three different movie-viewing fMRI datasets to test the performance of our new algorithm. Hybrid hyperalignment derives a single common model space that aligns response-based information as well as or better than response hyperalignment while simultaneously aligning connectivity-based information better than connectivity hyperalignment. These results suggest that a single common information space can encode both shared cortical response and functional connectivity profiles across individuals.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Películas Cinematográficas , Red Nerviosa/diagnóstico por imagen , Adulto , Corteza Cerebral/fisiología , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Estimulación Luminosa/métodos
4.
Mol Psychiatry ; 24(4): 601-612, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29311651

RESUMEN

Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Complejo Nuclear Basolateral/metabolismo , Ciclofilinas/genética , Extinción Psicológica/efectos de los fármacos , Miedo/psicología , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Sitios de Carácter Cuantitativo/genética , Repeticiones de Tetratricopéptidos/genética
5.
Addict Biol ; 20(2): 259-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24397780

RESUMEN

The neural and genetic factors underlying chronic tolerance to alcohol are currently unclear. The GluN2A N-methyl-D-aspartate receptors (NMDAR) subunit and the NMDAR-anchoring protein PSD-95 mediate acute alcohol intoxication and represent putative mechanisms mediating tolerance. We found that chronic intermittent ethanol exposure (CIE) did not produce tolerance [loss of righting reflex (LORR)] or withdrawal-anxiety in C57BL/6J, GluN2A or PSD-95 knockout mice assayed 2-3 days later. However, significant tolerance to LORR was evident 1 day after CIE in C57BL/6J and PSD-95 knockouts, but absent in GluN2A knockouts. These data suggest a role for GluN2A in tolerance, extending evidence that human GluN2A gene variation is involved in alcohol dependence.


Asunto(s)
Intoxicación Alcohólica/genética , Ansiedad/genética , Depresores del Sistema Nervioso Central/farmacología , Tolerancia a Medicamentos/genética , Etanol/farmacología , Guanilato-Quinasas/genética , Proteínas de la Membrana/genética , Receptores de N-Metil-D-Aspartato/genética , Síndrome de Abstinencia a Sustancias/genética , Animales , Homólogo 4 de la Proteína Discs Large , Ratones , Ratones Noqueados
6.
Artículo en Inglés | MEDLINE | ID: mdl-39009136

RESUMEN

BACKGROUND: To progress adolescent mental health research beyond our present achievements - a complex account of brain and environmental risk factors without understanding neurobiological embedding in the environment - we need methods to unveil relationships between the developing brain and real-world environmental experiences. METHODS: We investigated associations among brain function, environments, and emotional and behavioral problems using participants from the Adolescent Brain and Cognitive Development Study (N=2,401 female). We applied manifold learning, a promising technique for uncovering latent structure from high-dimensional biomedical data like functional magnetic resonance imaging (fMRI). Specifically, we developed exogenous PHATE (E-PHATE) to model brain-environment interactions. We used E-PHATE embeddings of participants' brain activation during emotional and cognitive processing to predict individual differences in cognition and emotional and behavioral problems, both cross-sectionally and longitudinally. RESULTS: E-PHATE embeddings of participants' brain activation and environments at baseline show moderate-to-large associations with total, externalizing, and internalizing problems at baseline, across several subcortical regions and large-scale cortical networks, relative to the zero-to-small effects achieved by voxel or PHATE methods. E-PHATE embeddings of the brain and environment at baseline also relate to emotional and behavioral problems two years later. These longitudinal predictions show a consistent, moderate effect in the frontoparietal and attention networks. CONCLUSIONS: Adolescent brain's embedding in the environment yields enriched insight into emotional and behavioral problems. Using E-PHATE, we demonstrate how the harmonization of cutting-edge computational methods with longstanding developmental theories advances detection and prediction of adolescent emotional and behavioral problems.

7.
bioRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38496476

RESUMEN

Background: To progress adolescent mental health research beyond our present achievements - a complex account of brain and environmental risk factors without understanding neurobiological embedding in the environment - we need methods to unveil relationships between the developing brain and real-world environmental experiences. Methods: We investigated associations among brain function, environments, and emotional and behavioral problems using participants from the Adolescent Brain and Cognitive Development Study (N=2,401 female). We applied manifold learning, a promising technique for uncovering latent structure from high-dimensional biomedical data like functional magnetic resonance imaging (fMRI). Specifically, we developed exogenous PHATE (E-PHATE) to model brain-environment interactions. We used E-PHATE embeddings of participants' brain activation during emotional and cognitive processing to predict individual differences in cognition and emotional and behavioral problems, both cross-sectionally and longitudinally. Results: E-PHATE embeddings of participants' brain activation and environments at baseline show moderate-to-large associations with total, externalizing, and internalizing problems at baseline, across several subcortical regions and large-scale cortical networks, relative to the zero-to-small effects achieved by voxel or PHATE methods. E-PHATE embeddings of the brain and environment at baseline also relate to emotional and behavioral problems two years later. These longitudinal predictions show a consistent, moderate effect in the frontoparietal and attention networks. Conclusions: Adolescent brain's embedding in the environment yields enriched insight into emotional and behavioral problems. Using E-PHATE, we demonstrate how the harmonization of cutting-edge computational methods with longstanding developmental theories advances detection and prediction of adolescent emotional and behavioral problems.

8.
Nat Comput Sci ; 3(3): 240-253, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37693659

RESUMEN

The complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure. Here we introduce a nonlinear manifold learning method for time-series data-including those from fMRI-called temporal potential of heat-diffusion for affinity-based transition embedding (T-PHATE). In addition to recovering a low-dimensional intrinsic manifold geometry from time-series data, T-PHATE exploits the data's autocorrelative structure to faithfully denoise and unveil dynamic trajectories. We empirically validate T-PHATE on three fMRI datasets, showing that it greatly improves data visualization, classification, and segmentation of the data relative to several other state-of-the-art dimensionality-reduction benchmarks. These improvements suggest many potential applications of T-PHATE to other high-dimensional datasets of temporally diffuse processes.

9.
Sci Adv ; 1(6)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26504902

RESUMEN

Persistent anxiety after a psychological trauma is a hallmark of many anxiety disorders. However, the neural circuits mediating the extinction of traumatic fear memories remain incompletely understood. We show that selective, in vivo stimulation of the ventromedial prefrontal cortex (vmPFC)-amygdala pathway facilitated extinction memory formation, but not retrieval. Conversely, silencing the vmPFC-amygdala pathway impaired extinction formation and reduced extinction-induced amygdala activity. Our data demonstrate a critical instructional role for the vmPFC-amygdala circuit in the formation of extinction memories. These findings advance our understanding of the neural basis of persistent fear, with implications for posttraumatic stress disorder and other anxiety disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA