Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 273-285, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985560

RESUMEN

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Asunto(s)
Muerte Celular , Animales , Apoptosis , Humanos , Hierro/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
2.
Cell ; 142(6): 857-67, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20817278

RESUMEN

Alzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD ß-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads Fe(3+) into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP(-/-) mice are vulnerable to dietary iron exposure, which causes Fe(2+) accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD postmortem neocortex is inhibited by endogenous Zn(2+), which we demonstrate can originate from Zn(2+)-laden amyloid aggregates and correlates with Aß burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ceruloplasmina/antagonistas & inhibidores , Zinc/metabolismo , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Animales , Línea Celular , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Humanos , Hierro/metabolismo , Ratones , Alineación de Secuencia
3.
Mol Psychiatry ; 28(5): 2058-2070, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36750734

RESUMEN

Despite loss of grey matter volume and emergence of distinct cognitive deficits in young adults diagnosed with schizophrenia, current treatments for schizophrenia do not target disruptions in late maturational reshaping of the prefrontal cortex. Iron, the most abundant transition metal in the brain, is essential to brain development and function, but in excess, it can impair major neurotransmission systems and lead to lipid peroxidation, neuroinflammation and accelerated aging. However, analysis of cortical iron biology in schizophrenia has not been reported in modern literature. Using a combination of inductively coupled plasma-mass spectrometry and western blots, we quantified iron and its major-storage protein, ferritin, in post-mortem prefrontal cortex specimens obtained from three independent, well-characterised brain tissue resources. Compared to matched controls (n = 85), among schizophrenia cases (n = 86) we found elevated tissue iron, unlikely to be confounded by demographic and lifestyle variables, by duration, dose and type of antipsychotic medications used or by copper and zinc levels. We further observed a loss of physiologic age-dependent iron accumulation among people with schizophrenia, in that the iron level among cases was already high in young adulthood. Ferritin, which stores iron in a redox-inactive form, was paradoxically decreased in individuals with the disorder. Such iron-ferritin uncoupling could alter free, chemically reactive, tissue iron in key reasoning and planning areas of the young-adult schizophrenia cortex. Using a prediction model based on iron and ferritin, our data provide a pathophysiologic link between perturbed cortical iron biology and schizophrenia and indicate that achievement of optimal cortical iron homeostasis could offer a new therapeutic target.


Asunto(s)
Esquizofrenia , Adulto Joven , Humanos , Adulto , Hierro , Corteza Prefrontal , Ferritinas , Biología
4.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37735502

RESUMEN

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Proteínas tau/metabolismo , Páncreas/metabolismo , Páncreas/patología , Glucosa/metabolismo , Enfermedad de Alzheimer/metabolismo
5.
Biomacromolecules ; 25(2): 1068-1083, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38178625

RESUMEN

A great deal of nanocarriers have been applied to induce ferroptosis in cancer research, yet there are limited examples of nanocarrier formulations to rescue ferroptosis, which can be applied to neurodegeneration, inflammation, liver damage, kidney disease, and more. Here, we present the synthesis, characterization, and in vitro evaluation of pH-responsive, core-cross-linked micelle (CCM) ferrostatin-1 (Fer-1) conjugates with amine, valproic acid, and biotin surface chemistries. Fer-1 release from stable and defined CCM Fer-1 conjugates was quantified, highlighting the sustained release for 24 h. CCM Fer-1 conjugates demonstrated excellent ferroptosis rescue by their antilipid peroxidation activity in a diverse set of cell lines in vitro. Additionally, CCMs showed tunable cell association in SH-SY5Y and translocation across an in vitro blood-brain barrier (BBB) model, highlighting potential brain disease applications. Overall, here, we present a polymeric Fer-1 delivery system to enhance Fer-1 action, which could help in improving Fer-1 action in the treatment of ferroptosis-related diseases.


Asunto(s)
Micelas , Neuroblastoma , Humanos , Oxazoles , Línea Celular , Antígenos
6.
Proteomics ; : e2300063, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37654087

RESUMEN

Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.

7.
Neuropathol Appl Neurobiol ; : e12950, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112248

RESUMEN

OBJECTIVE: Filipin complex is an autooxidation-prone fluorescent histochemical stain used in the diagnosis of Niemann-Pick Disease Type C (NP-C), a neurodegenerative lysosomal storage disorder. It is also widely used by researchers examining the distribution and accumulation of unesterified cholesterol in cell and animal models of neurodegenerative diseases including NP-C and Sanfilippo syndrome (mucopolysaccharidosis IIIA; MPS IIIA). Recently, it has been suggested to be useful in studying Alzheimer's and Huntington's disease. Given filipin's susceptibility to photobleaching, we sought to establish a quantitative biochemical method for free cholesterol measurement. METHODS: Brain tissue from mice with MPS IIIA was stained with filipin. Total and free cholesterol in brain homogenates was measured using a commercially available kit and a quantitative LC-MS/MS assay was developed. Gangliosides GM1, GM2 and GM3 were also quantified using LC-MS/MS. RESULTS: As anticipated, the MPS IIIA mouse brain displayed large numbers of filipin-positive intra-cytoplasmic inclusions, presumptively endo-lysosomes. Challenging the prevailing dogma, however, we found no difference in the amount of free cholesterol in MPS IIIA mouse brain homogenates cf. control tissue, using either the fluorometric kit or LC-MS/MS assay. Filipin has previously been reported to bind to GM1 ganglioside, however, this lipid does not accumulate in MPS IIIA cells/tissues. Using a fluorometric assay, we demonstrate for the first time that filipin cross-reacts with both GM2 and GM3 gangliosides, explaining the filipin-reactive inclusions observed in MPS IIIA brain cells. CONCLUSION: Filipin is not specific for free cholesterol, and positive staining in any setting should be interpreted with caution.

8.
Mol Psychiatry ; 27(10): 4307-4313, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36195639

RESUMEN

Copper is an essential micronutrient for brain health and dyshomeostasis of copper could have a pathophysiological role in Alzheimer's disease (AD), however, there are limited data from community-based samples. In this study, we investigate the association of brain copper (assessed using ICP-MS in four regions -inferior temporal, mid-frontal, anterior cingulate, and cerebellum) and dietary copper with cognitive decline and AD pathology burden (a quantitative summary of neurofibrillary tangles, diffuse and neuritic plaques in multiple brain regions) at autopsy examination among deceased participants (N = 657; age of death: 90.2(±6.2)years, 70% women, 25% APOE-ɛ4 carriers) in the Rush Memory and Aging Project. During annual visits, these participants completed cognitive assessments using a 19-test battery and dietary assessments (using a food frequency questionnaire). Regression, linear mixed-effects, and logistic models adjusted for age at death, sex, education, and APOE-ε4 status were used. Higher composite brain copper levels were associated with slower cognitive decline (ß(SE) = 0.028(0.01), p = 0.001) and less global AD pathology (ß(SE) = -0.069(0.02), p = 0.0004). Participants in the middle and highest tertile of dietary copper had slower cognitive decline (T2vs.T1: ß = 0.038, p = 0.0008; T3vs.T1: ß = 0.028, p = 0.01) than those in the lowest tertile. Dietary copper intake was not associated with brain copper levels or AD pathology. Associations of higher brain copper levels with slower cognitive decline and with less AD pathology support a role for copper dyshomeostasis in AD pathogenesis and suggest that lower brain copper may exacerbate or indicate disease severity. Dietary and brain copper are unrelated but dietary copper is associated with slower cognitive decline via an unknown mechanism.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/patología , Cobre , Apolipoproteína E4/genética , Disfunción Cognitiva/patología , Encéfalo/patología
9.
Mol Psychiatry ; 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484240

RESUMEN

Allelic variation to the APOE gene confers the greatest genetic risk for sporadic Alzheimer's disease (AD). Independent of genotype, low abundance of apolipoprotein E (apoE), is characteristic of AD CSF, and predicts cognitive decline. The mechanisms underlying the genotype and apoE level risks are uncertain. Recent fluid and imaging biomarker studies have revealed an unexpected link between apoE and brain iron, which also forecasts disease progression, possibly through ferroptosis, an iron-dependent regulated cell death pathway. Here, we report that apoE is a potent inhibitor of ferroptosis (EC50 ≈ 10 nM; N27 neurons). We demonstrate that apoE signals to activate the PI3K/AKT pathway that then inhibits the autophagic degradation of ferritin (ferritinophagy), thus averting iron-dependent lipid peroxidation. Using postmortem inferior temporal brain cortex tissue from deceased subjects from the Rush Memory and Aging Project (MAP) (N = 608), we found that the association of iron with pathologically confirmed clinical Alzheimer's disease was stronger among those with the adverse APOE-ε4 allele. While protection against ferroptosis did not differ between apoE isoforms in vitro, other features of ε4 carriers, such as low abundance of apoE protein and higher levels of polyunsaturated fatty acids (which fuel ferroptosis) could mediate the ε4 allele's heighted risk of AD. These data support ferroptosis as a putative pathway to explain the major genetic risk associated with late onset AD.

10.
J Biol Chem ; 296: 100105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33219130

RESUMEN

Treatments for Alzheimer's disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer's pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/metabolismo , Cobre/metabolismo , Ferroptosis , Humanos , Hierro/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Placa Amiloide/patología , Selenio/metabolismo , Zinc/metabolismo
11.
J Neurochem ; 162(3): 226-244, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35304760

RESUMEN

P-glycoprotein (P-gp) is an efflux transporter at the blood-brain barrier (BBB) that hinders brain access of substrate drugs and clears endogenous molecules such as amyloid beta (Aß) from the brain. As biometals such as copper (Cu) modulate many neuronal signalling pathways linked to P-gp regulation, it was hypothesised that the bis(thiosemicarbazone) (BTSC) Cu-releasing complex, copper II glyoxal bis(4-methyl-3-thiosemicarbazone) (CuII [GTSM]), would enhance P-gp expression and function at the BBB, while copper II diacetyl bis(4-methyl-3-thiosemicarbazone) (CuII [ATSM]), which only releases Cu under hypoxic conditions, would not modulate P-gp expression. Following treatment with 25-250 nM CuII (BTSC)s for 8-48 h, expression of P-gp mRNA and protein in human brain endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively. P-gp function was assessed by measuring accumulation of the fluorescent P-gp substrate, rhodamine 123 and intracellular Cu levels were quantified by inductively coupled plasma mass spectrometry. Interestingly, CuII (ATSM) significantly enhanced P-gp expression and function 2-fold and 1.3-fold, respectively, whereas CuII (GTSM) reduced P-gp expression 0.5-fold and function by 200%. As both compounds increased intracellular Cu levels, the effect of different BTSC backbones, independent of Cu, on P-gp expression was assessed. However, only the Cu-ATSM complex enhanced P-gp expression and this was mediated partly through activation (1.4-fold) of the extracellular signal-regulated kinase 1 and 2, an outcome that was significantly attenuated in the presence of an inhibitor of the mitogen-activated protein kinase regulatory pathway. Our findings suggest that CuII (ATSM) and CuII (GTSM) have the potential to modulate the expression and function of P-gp at the BBB to impact brain drug delivery and clearance of Aß.


Asunto(s)
Cobre , Tiosemicarbazonas , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cobre/metabolismo , Células Endoteliales/metabolismo , Humanos , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología
12.
J Neurochem ; 163(1): 53-67, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36000528

RESUMEN

Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.


Asunto(s)
Enfermedad de Alzheimer , Lipoproteínas HDL , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Apolipoproteína C-III/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo
13.
Mov Disord ; 37(5): 993-1003, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35137973

RESUMEN

BACKGROUND: Neuroinflammation is implicated in the pathophysiology of Parkinson's disease (PD) and related conditions, yet prior clinical biomarker data report mixed findings. OBJECTIVES: The aim was to measure a panel of neuroinflammatory acute phase response (APR) proteins in the cerebrospinal fluid (CSF) of participants with PD and related disorders. METHODS: Eleven APR proteins were measured in the CSF of 867 participants from the BioFINDER cohort who were healthy (612) or had a diagnosis of PD (155), multiple system atrophy (MSA) (26), progressive supranuclear palsy (PSP) (22), dementia with Lewy bodies (DLB) (23), or Parkinson's disease with dementia (PDD) (29). RESULTS: CSF APR proteins were mostly unchanged in PD, with only haptoglobin and α1-antitrypsin significantly elevated compared to controls. These proteins were variably increased in the other disorders. Certain protein components yielded unique signatures according to diagnosis: ferritin and transthyretin were selectively elevated in MSA and discriminated these patients from all others. Haptoglobin was selectively increased in PSP, discriminating this disease from MSA when used in combination with ferritin and transthyretin. This panel of proteins did not correlate well with severity of motor impairment in any disease category, but several (particularly ceruloplasmin and ferritin) were associated with memory performance (Mini-Mental State Examination) in patients with DLB and PDD. CONCLUSIONS: These findings provide new insights into inflammatory changes in PD and related disorders while also introducing biomarkers of potential clinical diagnostic utility. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Alzheimer , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Reacción de Fase Aguda/complicaciones , Reacción de Fase Aguda/diagnóstico , Enfermedad de Alzheimer/complicaciones , Biomarcadores/líquido cefalorraquídeo , Diagnóstico Diferencial , Ferritinas , Haptoglobinas/metabolismo , Humanos , Atrofia de Múltiples Sistemas/diagnóstico , Enfermedad de Parkinson/diagnóstico , Trastornos Parkinsonianos/complicaciones , Prealbúmina/metabolismo , Parálisis Supranuclear Progresiva/diagnóstico
14.
Mol Psychiatry ; 26(10): 5516-5531, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400772

RESUMEN

Amyloidogenic processing of the amyloid precursor protein (APP) forms the amyloid-ß peptide (Aß) component of pathognomonic extracellular plaques of AD. Additional early cortical changes in AD include neuroinflammation and elevated iron levels. Activation of the innate immune system in the brain is a neuroprotective response to infection; however, persistent neuroinflammation is linked to AD neuropathology by uncertain mechanisms. Non-parametric machine learning analysis on transcriptomic data from a large neuropathologically characterised patient cohort revealed the acute phase protein lactoferrin (Lf) as the key predictor of amyloid pathology. In vitro studies showed that an interaction between APP and the iron-bound form of Lf secreted from activated microglia diverted neuronal APP endocytosis from the canonical clathrin-dependent pathway to one requiring ADP ribosylation factor 6 trafficking. By rerouting APP recycling to the Rab11-positive compartment for amyloidogenic processing, Lf dramatically increased neuronal Aß production. Lf emerges as a novel pharmacological target for AD that not only modulates APP processing but provides a link between Aß production, neuroinflammation and iron dysregulation.


Asunto(s)
Enfermedad de Alzheimer , Lactoferrina , Proteínas de Fase Aguda , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos
15.
Proteome Sci ; 20(1): 2, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081972

RESUMEN

BACKGROUND: The Australian Imaging and Biomarker Lifestyle (AIBL) study of aging is designed to aid the discovery of biomarkers. The current study aimed to discover differentially expressed plasma proteins that could yield a blood-based screening tool for Alzheimer's disease. METHODS: The concentration of proteins in plasma covers a vast range of 12 orders of magnitude. Therefore, to search for medium to low abundant biomarkers and elucidate mechanisms of AD, we immuno-depleted the most abundant plasma proteins and pre-fractionated the remaining proteins by HPLC, prior to two-dimensional gel electrophoresis. The relative levels of approximately 3400 protein species resolved on the 2D gels were compared using in-gel differential analysis with spectrally resolved fluorescent protein detection dyes (Zdyes™). Here we report on analysis of pooled plasma samples from an initial screen of a sex-matched cohort of 72 probable AD patients and 72 healthy controls from the baseline time point of AIBL. RESULTS: We report significant changes in variants of apolipoprotein E, haptoglobin, α1 anti-trypsin, inter-α trypsin inhibitor, histidine-rich glycoprotein, and a protein of unknown identity. α1 anti-trypsin and α1 anti-chymotrypsin demonstrated plasma concentrations that were dependent on APOE ε4 allele dose. Our analysis also identified an association with the level of Vitamin D binding protein fragments and complement factor I with sex. We then conducted a preliminary validation study, on unique individual samples compared to the discovery cohort, using a targeted LC-MS/MS assay on a subset of discovered biomarkers. We found that targets that displayed a high degree of isoform specific changes in the 2D gels were not changed in the targeted MS assay which reports on the total level of the biomarker. CONCLUSIONS: This demonstrates that further development of mass spectrometry assays is needed to capture the isoform complexity that exists in theses biological samples. However, this study indicates that a peripheral protein signature has potential to aid in the characterization of AD.

16.
Mol Pharm ; 19(11): 3987-3999, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36125338

RESUMEN

Messenger RNA (mRNA) holds great potential as a disease-modifying treatment for a wide array of monogenic disorders. Niemann-Pick disease type C1 (NP-C1) is an ultrarare monogenic disease that arises due to loss-of-function mutations in the NPC1 gene, resulting in the entrapment of unesterified cholesterol in the lysosomes of affected cells and a subsequent reduction in their capacity for cholesterol esterification. This causes severe damage to various organs including the brain, liver, and spleen. In this work, we describe the use of NPC1-encoded mRNA to rescue the protein insufficiency and pathogenic phenotype caused by biallelic NPC1 mutations in cultured fibroblasts derived from an NP-C1 patient. We first evaluated engineering strategies for the generation of potent mRNAs capable of eliciting high protein expression across multiple cell types. We observed that "GC3" codon optimization, coupled with N1-methylpseudouridine base modification, yielded an mRNA that was approximately 1000-fold more potent than wild-type, unmodified mRNA in a luciferase reporter assay and consistently superior to other mRNA variants. Our data suggest that the improved expression associated with this design strategy was due in large part to the increased secondary structure of the designed mRNAs. Both codon optimization and base modification appear to contribute to increased secondary structure. Applying these principles to the engineering of NPC1-encoded mRNA, we observed a normalization in NPC1 protein levels after mRNA treatment, as well as a rescue of the mutant phenotype. Specifically, mRNA treatment restored the cholesterol esterification capacity of patient cells to wild-type levels and induced a significant reduction in both unesterified cholesterol levels (>57% reduction compared to Lipofectamine-treated control in a cholesterol esterification assay) and lysosome size (157 µm2 reduction compared to Lipofectamine-treated control). These findings show that engineered mRNA can correct the deficit caused by NPC1 mutations. More broadly, they also serve to further validate the potential of this technology to correct diseases associated with loss-of-function mutations in genes coding for large, complex, intracellular proteins.


Asunto(s)
Glicoproteínas de Membrana , Enfermedades de Niemann-Pick , Humanos , Glicoproteínas de Membrana/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fibroblastos/metabolismo , Colesterol/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología
17.
Alzheimers Dement ; 18(11): 2151-2166, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35077012

RESUMEN

INTRODUCTION: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Australia , Apolipoproteínas E/genética , Genotipo , Estudios de Cohortes , Apolipoproteína E4/genética
18.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555849

RESUMEN

Dysregulated brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signalling is implicated in several neurodegenerative diseases, including Alzheimer's disease. A failure of neurotrophic support may participate in neurodegenerative mechanisms, such as ferroptosis, which has likewise been implicated in this disease class. The current study investigated whether modulators of TrkB signalling affect ferroptosis. Cell viability, C11 BODIPY, and cell-free oxidation assays were used to observe the impact of TrkB modulators, and an immunoblot assay was used to detect TrkB expression. TrkB modulators such as agonist BDNF, antagonist ANA-12, and inhibitor K252a did not affect RSL3-induced ferroptosis sensitivity in primary cortical neurons expressing detectable TrkB receptors. Several other modulators of the TrkB receptor, including agonist 7,8-DHF, activator phenelzine sulphate, and inhibitor GNF-5837, conferred protection against a range of ferroptosis inducers in several immortalised neuronal and non-neuronal cell lines, such as N27 and HT-1080 cells. We found these immortalised cell lines lack detectable TrkB receptor expression, so the anti-ferroptotic activity of these TrkB modulators was most likely due to their inherent radical-trapping antioxidant properties, which should be considered when interpreting their experimental findings. These modulators or their variants could be potential anti-ferroptotic therapeutics for various diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptor trkB , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Transducción de Señal , Neuronas/metabolismo , Supervivencia Celular
19.
J Biol Chem ; 295(51): 17497-17513, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453994

RESUMEN

Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD.


Asunto(s)
Lisosomas/metabolismo , alfa-Sinucleína/toxicidad , Animales , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Endosomas/metabolismo , Ferroptosis/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
J Neurochem ; 159(5): 804-825, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34553778

RESUMEN

Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While ß-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Ferroptosis/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Encéfalo/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Humanos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA