Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Comput Chem ; 23(3): 351-64, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11908498

RESUMEN

Various methods for deriving atomic partial charges from the quantum chemical electrostatic potential and moments have been tested for the sucrose molecule. We show that if no further information is used, the charges on some carbon atoms become large and charge patterns involving these atoms are badly determined and poorly transferable. Adding lone-pairs on the ether oxygen atoms or dividing the molecule into smaller fragments did not cure the instabilities. We develop a method, CHELP-BOW0, that restrains charges toward zero with different weights for different atoms. These harmonic restraints preserve the linear form of the least-squares equations, which are solved in a single step using singular-value decomposition. CHELP-BOW0 improves the chemical transferability of the charges compared to unrestrained methods, and slightly improves their conformational transferability. It introduces a modest degradation of the fit compared to unrestrained CHELP-BOW (mean average deviation of the potential 0.00016 vs. 0.00010 a.u.). A second new method, CHELP-BOWC, avoids the need for restraints by including several conformations in the fit, weighting each according to its estimated energy in solution. CHELP-BOWC charges are more transferable than CHELP-BOW or CHELP-BOW0 charges to conformations not included in the training set. Restraints to zero charge do not further improve transferability of the CHELP-BOWC charges. We, therefore, recommend CHELP-BOW charges for rigid molecules and CHELP-BOWC charges for flexible molecules.


Asunto(s)
Disacáridos/química , Modelos Moleculares , Simulación por Computador , Iones/química , Electricidad Estática , Sacarosa/química , Agua/química
2.
Bioinformatics ; 20(9): 1416-27, 2004 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-14976033

RESUMEN

MOTIVATION: Many bioinformatic approaches exist for finding novel genes within genomic sequence data. Traditionally, homology search-based methods are often the first approach employed in determining whether a novel gene exists that is similar to a known gene. Unfortunately, distantly related genes or motifs often are difficult to find using single query-based homology search algorithms against large sequence datasets such as the human genome. Therefore, the motivation behind this work was to develop an approach to enhance the sensitivity of traditional single query-based homology algorithms against genomic data without losing search selectivity. RESULTS: We demonstrate that by searching against a genome fragmented into all possible reading frames, the sensitivity of homology-based searches is enhanced without degrading its selectivity. Using the ETS-domain, bromodomain and acetyl-CoA acetyltransferase gene as queries, we were able to demonstrate that direct protein-protein searches using BLAST2P or FASTA3 against a human genome segmented among all possible reading frames and translated was substantially more sensitive than traditional protein-DNA searches against a raw genomic sequence using an application such as TBLAST2N. Receiver operating characteristic analysis was employed to demonstrate that the algorithms remained selective, while comparisons of the algorithms showed that the protein-protein searches were more sensitive in identifying hits. Therefore, through the overprediction of reading frames by this method and the increased sensitivity of protein-protein based homology search algorithms, a genome can be deeply mined, potentially finding hits overlooked by protein-DNA searches against raw genomic data.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Sistemas de Lectura Abierta , Proteínas/análisis , Proteínas/química , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA