Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 106, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600576

RESUMEN

BACKGROUND: The textile industry has several negative impacts, mainly because it is based on a linear business model that depletes natural resources and produces excessive amounts of waste. Globally, about 75% of textile waste is disposed of in landfills and only 25% is reused or recycled, while less than 1% is recycled back into new garments. In this study, we explored the valorisation of cotton fabric waste from an apparel textile manufacturing company as valuable biomass to produce lactic acid, a versatile chemical building block. RESULTS: Post-industrial cotton patches were pre-treated with the aim of developing a methodology applicable to the industrial site involved. First, a mechanical shredding machine reduced the fabric into individual fibres of maximum 35 mm in length. Afterwards, an alkaline treatment was performed, using NaOH at different concentrations, including a 16% (w/v) NaOH enriched waste stream from the mercerisation of cotton fabrics. The combination of chemo-mechanical pre-treatment and enzymatic hydrolysis led to the maximum recovery yield of 90.46 ± 3.46%, corresponding to 74.96 ± 2.76 g/L of glucose released, which represents a novel valorisation of two different side products (NaOH enriched wastewater and cotton textile waste) of the textile industry. The Saccharomyces cerevisiae strain CEN.PK m850, engineered for redirecting the natural alcoholic fermentation towards a homolactic fermentation, was then used to valorise the glucose-enriched hydrolysate into lactic acid. Overall, the process produced 53.04 g/L ± 0.34 of L-lactic acid, with a yield of 82.7%, being the first example of second-generation biomass valorised with this yeast strain, to the best of our knowledge. Remarkably, the fermentation performances were comparable with the ones obtained in the control medium. CONCLUSION: This study validates the exploitation of cotton post-industrial waste as a possible feedstock for the production of commodity chemicals in microbial cell-based biorefineries. The presented strategy demonstrates the possibility of implementing a circular bioeconomy approach in manufacturing textile industries.


Asunto(s)
Residuos Industriales , Saccharomyces cerevisiae , Fermentación , Ácido Láctico , Hidrólisis , Hidróxido de Sodio , Textiles , Glucosa
2.
FEMS Yeast Res ; 232023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36640150

RESUMEN

CRISPR-Cas9 technology is widely used for precise and specific editing of Saccharomyces cerevisiae genome to obtain marker-free engineered hosts. Targeted double-strand breaks are controlled by a guide RNA (gRNA), a chimeric RNA containing a structural segment for Cas9 binding and a 20-mer guide sequence that hybridises to the genomic DNA target. Introducing the 20-mer guide sequence into gRNA expression vectors often requires complex, time-consuming, and/or expensive cloning procedures. We present a new plasmid for CRISPR-Cas9 genome editing in S. cerevisiae, pCEC-red. This tool allows to (i) transform yeast with both Cas9 and gRNA expression cassettes in a single plasmid and (ii) insert the 20-mer sequence in the plasmid with high efficiency, thanks to Golden Gate Assembly and (iii) a red chromoprotein-based screening to speed up the selection of correct plasmids. We tested genome-editing efficiency of pCEC-red by targeting the ADE2 gene. We chose three different 20-mer targets and designed two types of repair fragments to test pCEC-red for precision editing and for large DNA region replacement procedures. We obtained high efficiencies (∼90%) for both engineering procedures, suggesting that the pCEC system can be used for fast and reliable marker-free genome editing.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Edición Génica/métodos , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas , Plásmidos , ADN/metabolismo , ARN Guía de Sistemas CRISPR-Cas
3.
AMB Express ; 14(1): 32, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506984

RESUMEN

Laccases are multicopper oxidases able to oxidize several phenolic compounds and find application in numerous industrial applications. Among laccase producers, white-rot fungi represent a valuable source of multiple isoforms and isoenzymes of these multicopper oxidases. Here we describe the identification, biochemical characterization, and application of laccase 2 from Trametes polyzona (TP-Lac2), a basidiomycete fungus emerged among others that have been screened by plate assay. This enzyme has an optimal temperature of 50 °C and in acidic conditions it is able to oxidize both phenolic and non-phenolic compounds. The ability of TP-Lac2 to decolorize textile dyes was tested in the presence of natural and synthetic mediators at 30 °C and 50 °C. Our results indicate that TP-Lac2 most efficiently decolorizes (decolorization rate > 75%) malachite green oxalate, orange G, amido black10B and bromocresol purple in the presence of acetosyringone and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonate)-ABTS. Overall, the laccase mediator system consisting of TP-Lac2 and the natural mediator acetosyringone has potential as an environmentally friendly alternative for wastewater treatment in the textile industry.

4.
ACS Synth Biol ; 12(5): 1508-1519, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37058502

RESUMEN

Nowadays, the yeast Saccharomyces cerevisiae is the platform of choice for demonstrating the proof of concept of the production of metabolites with a complex structure. However, introducing heterologous genes and rewiring the endogenous metabolism is still not standardized enough, affecting negatively the readiness-to-market of such metabolites. We developed the Easy Modular Integrative fuSion-ready Expression (Easy-MISE) toolkit, which is a novel combination of synthetic biology tools based on a single Golden Gate multiplasmid assembly meant to further ameliorate the rational predictability and flexibility of the process of yeast engineering. Thanks to an improved cloning screening strategy, double and independent transcription units are easily assembled and subsequently integrated into previously characterized loci. Moreover, the devices can be tagged for localization. This design allows for a higher degree of modularity and increases the flexibility of the engineering strategy. We show with a case study how the developed toolkit accelerates the construction and the analysis of the intermediate and the final engineered yeast strains, leaving space to better characterize the heterologous biosynthetic pathway in the final host and, overall, to improve the fermentation performances. Different S. cerevisiae strains were built harboring different versions of the biochemical pathway toward glucobrassicin (GLB) production, an indolyl-methyl glucosinolate. In the end, we could demonstrate that in the tested conditions the best-producing strain leads to a final concentration of GLB of 9.80 ± 0.267 mg/L, a titer 10-fold higher than the best result previously reported in the literature.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Sistemas CRISPR-Cas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA