RESUMEN
OBJECTIVES: This study aimed to evaluate the efficacy of inhaled cationic antibiotics, including tobramycin (TOB) and colistin (CST), using an in vitro alginate bead model that simulates Pseudomonas aeruginosa lung biofilms. METHODS: Bioluminescent P. aeruginosa were encapsulated within alginate beads and dispersed in either Mueller-Hinton broth (MHB) or artificial sputum medium (ASM). The impact of bead size and culture medium on TOB and CST efficacy was assessed by monitoring bioluminescence kinetics, followed by colony-forming unit (CFU/mL) measurements. Antibiotic efficacy was quantified using a Hill inhibitory model to analyze variations in CFU/mL in response to TOB and CST concentrations. RESULTS: The TOB EC50 was found to be 8-fold higher when P. aeruginosa was encapsulated in larger beads (1200 µm) compared to smaller beads (60 µm). TOB efficacy further decreased twofold when larger beads were dispersed in ASM. In contrast, CST demonstrated superior efficacy, being four times more potent than TOB, with corresponding EC50 values of 20.5 ± 2.8 times MIC and 78.4 ± 10.2 times MIC, respectively. No change in MICs was observed for either antibiotic, even after exposing bacteria to 200 times the MIC. CONCLUSIONS: This P. aeruginosa biofilm model highlights how alginate and mucus modulated the efficacy of TOB and CST, and suggested the superior efficacy of CST in eradicating pulmonary biofilms.
RESUMEN
BACKGROUND: The main antibiotics used against Helicobacter pylori have been chosen empirically over time, with few preclinical studies to provide support. The rise in resistance to some of these antibiotics is prompting a reassessment of their use. This work aimed to evaluate the in vitro efficacy of 2 × 2 combinations of the most widely used antibiotics against H. pylori. MATERIALS AND METHODS: J99 reference strains and 19 clinical isolates of H. pylori with various antibiotic resistance phenotypes were used. Minimum inhibitory concentrations were carried out using the microdilution method in 96-well plates. The activity of 15 possible combinations of two antibiotics including amoxicillin, clarithromycin (CLA), levofloxacin, rifampicin, tetracycline, and metronidazole was determined for all strains by the checkerboard method. A mean fractional inhibitory concentration index (FICmean) was calculated for each combination and strain and the type of pharmacodynamic interaction was considered as synergic if FICmean ≤ 0.5, additive if 0.5 < FICmean ≤ 1, indifferent if 1 < FICmean < 4 or antagonistic if FICmean ≥ 4. RESULTS: Most of the 285 pharmacodynamic interactions tested with clinical strains were close to additivity (average FICmean = 0.89 [0.38-1.28]). No interaction was found to be antagonistic. When two antibiotics to which a strain was resistant were combined, the concentrations required to inhibit bacterial growth were higher than their respective breakpoints. CONCLUSION: The present results have shown that in vitro, the different antibiotics used in therapeutics have additive effects. The addition of the effects of two antibiotics to which a strain was resistant was not sufficient to inhibit bacterial growth. In probabilistic treatment, the choice of antibiotics to combine should therefore be based on the local epidemiology of resistance, and on susceptibility testing in the case of CLA therapy, so that at least one antibiotic to which the strain is susceptible is used.
Asunto(s)
Antibacterianos , Infecciones por Helicobacter , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Helicobacter pylori/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Farmacorresistencia Bacteriana , Quimioterapia Combinada , Sinergismo FarmacológicoRESUMEN
BACKGROUND: Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used. However, in recent years, a number of azole-resistant strains have been described. Their mechanisms of resistance are currently poorly studied. OBJECTIVE: The aim of this study was consequently to understand the mechanisms of azole resistance in several clinical isolates of M. guilliermondii. METHODS: Ten isolates of M. guilliermondii and the ATCC 6260 reference strain were studied. MICs of azoles were determined first. Whole genome sequencing of the isolates was then carried out and the mutations identified in ERG11 were expressed in a CTG clade yeast model (C. lusitaniae). RNA expression of ERG11, MDR1 and CDR1 was evaluated by quantitative PCR. A phylogenic analysis was developed and performed on M. guilliermondii isolates. Lastly, in vitro experiments on fitness cost and virulence were carried out. RESULTS: Of the ten isolates tested, three showed pan-azole resistance. A combination of F126L and L505F mutations in Erg11 was highlighted in these three isolates. Interestingly, a combination of these two mutations was necessary to confer azole resistance. An overexpression of the Cdr1 efflux pump was also evidenced in one strain. Moreover, the three pan-azole-resistant isolates were shown to be genetically related and not associated with a fitness cost or a lower virulence, suggesting a possible clonal transmission. CONCLUSION: In conclusion, this study identified an original combination of ERG11 mutations responsible for pan-azole-resistance in M. guilliermondii. Moreover, we proposed a new MLST analysis for M. guilliermondii that identified possible clonal transmission of pan-azole-resistant strains. Future studies are needed to investigate the distribution of this clone in hospital environment and should lead to the reconsideration of the treatment for this species.
Asunto(s)
Azoles , Farmacorresistencia Fúngica , Saccharomycetales , Humanos , Azoles/farmacología , Tipificación de Secuencias Multilocus , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Mutación , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacologíaRESUMEN
Gram-negative bacterial pathogens have an outer membrane that restricts entry of molecules into the cell. Water-filled protein channels in the outer membrane, so-called porins, facilitate nutrient uptake and are thought to enable antibiotic entry. Here, we determined the role of porins in a major pathogen, Pseudomonas aeruginosa, by constructing a strain lacking all 40 identifiable porins and 15 strains carrying only a single unique type of porin and characterizing these strains with NMR metabolomics and antimicrobial susceptibility assays. In contrast to common assumptions, all porins were dispensable for Pseudomonas growth in rich medium and consumption of diverse hydrophilic nutrients. However, preferred nutrients with two or more carboxylate groups such as succinate and citrate permeated poorly in the absence of porins. Porins provided efficient translocation pathways for these nutrients with broad and overlapping substrate selectivity while efficiently excluding all tested antibiotics except carbapenems, which partially entered through OprD. Porin-independent permeation of antibiotics through the outer-membrane lipid bilayer was hampered by carboxylate groups, consistent with our nutrient data. Together, these results challenge common assumptions about the role of porins by demonstrating porin-independent permeation of the outer-membrane lipid bilayer as a major pathway for nutrient and drug entry into the bacterial cell.
Asunto(s)
Antibacterianos/metabolismo , Membrana Celular/fisiología , Nutrientes/metabolismo , Porinas/metabolismo , Pseudomonas aeruginosa/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico/fisiología , Permeabilidad de la Membrana CelularRESUMEN
A double ampC (AmpCG183D) and ampD (AmpDH157Y) genes mutations have been identified by whole genome sequencing in a Pseudomonas aeruginosa (PaS) that became resistant (PaR) in a patient treated by ceftolozane/tazobactam (C/T). To precisely characterize the respective contributions of these mutations on the decreased susceptibility to C/T and on the parallel increased susceptibility to imipenem (IMI), mutants were generated by homologous recombination in PAO1 reference strain (PAO1- AmpCG183D, PAO1-AmpDH157Y, PAO1-AmpCG183D/AmpDH157Y) and in PaR (PaR-AmpCPaS/AmpDPaS). Sequential time-kill curve experiments were conducted on all strains and analyzed by semi-mechanistic PKPD modeling. A PKPD model with adaptation successfully described the data, allowing discrimination between initial and time-related (adaptive resistance) effects of mutations. With PAO1 and mutant-derived strains, initial EC50 values increased by 1.4, 4.1, and 29-fold after AmpCG183D , AmpDH157Y and AmpCG183D/AmpDH157Y mutations, respectively. EC50 values were increased by 320, 12.4, and 55-fold at the end of the 2 nd experiment. EC50 of PAO1-AmpCG183D/AmpDH157Y was higher than that of single mutants at any time of the experiments. Within the PaR clinical background, reversal of AmpCG183D, and AmpDH157Y mutations led to an important decrease of EC50 value, from 80.5 mg/L to 6.77 mg/L for PaR and PaR-AmpCPaS/AmpDPaS, respectively. The effect of mutations on IMI susceptibility mainly showed that the AmpCG183D mutation prevented the emergence of adaptive resistance. The model successfully described the separate and combined effect of AmpCG183D and AmpDH157Y mutations against C/T and IMI, allowing discrimination and quantification of the initial and time-related effects of mutations. This method could be reproduced in clinical strains to decipher complex resistance mechanisms.
Asunto(s)
Farmacorresistencia Bacteriana , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/farmacología , Cefalosporinas/farmacología , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Tazobactam/farmacología , Farmacorresistencia Bacteriana/genéticaRESUMEN
The inoculum effect (i.e., reduction in antimicrobial activity at large starting inoculum) is a phenomenon described for various pathogens. Given that limited data exist regarding inoculum effect of Acinetobacter baumannii, we evaluated killing of A. baumannii by polymyxin B, a last-resort antibiotic, at several starting inocula and developed a pharmacokinetic-pharmacodynamic (PKPD) model to capture this phenomenon. In vitro static time-kill experiments were performed using polymyxin B at concentrations ranging from 0.125 to 128 mg/L against a clinical A. baumannii isolate at four starting inocula from 105 to 108 CFU/mL. Samples were collected up to 30 h to quantify the viable bacterial burden and were simultaneously modeled in the NONMEM software program. The expression of polymyxin B resistance genes (lpxACD, pmrCAB, and wzc), and genetic modifications were studied by RT-qPCR and DNA sequencing experiments, respectively. The PKPD model included a single homogeneous bacterial population with adaptive resistance. Polymyxin B effect was modeled as a sigmoidal Emax model and the inoculum effect as an increase of polymyxin B EC50 with increasing starting inoculum using a power function. Polymyxin B displayed a reduced activity as the starting inoculum increased: a 20-fold increase of polymyxin B EC50 was observed between the lowest and the highest inoculum. No effects of polymyxin B and inoculum size were observed on the studied genes. The proposed PKPD model successfully described and predicted the pronounced in vitro inoculum effect of A. baumannii on polymyxin B activity. These results should be further validated using other bacteria/antibiotic combinations and in vivo models.
Asunto(s)
Acinetobacter baumannii , Polimixina B , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacologíaRESUMEN
Mycobacterium abscessus is responsible for difficult-to-treat chronic pulmonary infections in humans. Current regimens, including parenteral administrations of cefoxitin (FOX) in combination with amikacin and clarithromycin, raise compliance problems and are frequently associated with high failure and development of resistance. Aerosol delivery of FOX could be an interesting alternative. FOX was administered to healthy rats by intravenous bolus or intratracheal nebulization, and concentrations were determined in plasma and epithelial lining fluid (ELF) by liquid chromatography-tandem mass spectrometry. After intrapulmonary administration, the FOX area under the curve within ELF was 1,147 times higher than that in plasma, indicating that this route of administration offers a biopharmaceutical advantage over intravenous administration. FOX antimicrobial activity was investigated using time-kill curves combined with a pharmacokinetic/pharmacodynamic (PK/PD) type modeling approach in order to account for its in vitro instability that precludes precise determination of MIC. Time-kill data were adequately described by a model including in vitro degradation, a sensitive (S) and a resistant (R) bacteria subpopulation, logistic growth, and a maximal inhibition-type growth inhibition effect of FOX. Median inhibitory concentrations were estimated at 16.2 and 252 mg/liter for the S and R subpopulations, respectively. These findings suggest that parenteral FOX dosing regimens used in patients for the treatment of M. abscessus are not sufficient to reduce the bacterial burden and that FOX nebulization offers a potential advantage that needs to be further investigated.
Asunto(s)
Antibacterianos/farmacología , Cefoxitina/farmacocinética , Cefoxitina/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Administración Intravenosa/métodos , Animales , Antibacterianos/farmacocinética , Claritromicina/farmacocinética , Claritromicina/uso terapéutico , Masculino , Pruebas de Sensibilidad Microbiana/métodos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Ratas , Ratas Sprague-Dawley , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiologíaRESUMEN
Type 3 secretion systems (T3SSs) are major virulence factors in Gram-negative bacteria. Pseudomonas aeruginosa expresses two T3SSs, namely, an injectisome (iT3SS) translocating effector proteins in the host cell cytosol and a flagellum (fT3SS) ensuring bacterial motility. Inhibiting these systems is an appealing therapeutic strategy for acute infections. This study examines the protective effects of the salicylidene acylhydrazide INP0341 and of the hydroxyquinoline INP1750 (previously described as T3SS inhibitors in other species) toward cytotoxic effects of P. aeruginosain vitro Both compounds reduced cell necrosis and inflammasome activation induced by reference strains or clinical isolates expressing T3SS toxins or only the translocation apparatus. INP0341 inhibited iT3SS transcriptional activation, including in strains with constitutive iT3SS expression, and reduced the total expression of toxins, suggesting it targets iT3SS gene transcription. INP1750 inhibited toxin secretion and flagellar motility and impaired the activity of the YscN ATPase from Yersinia pseudotuberculosis (homologous to the ATPase present in the basal body of P. aeruginosa iT3SS and fT3SS), suggesting that it rather targets a T3SS core constituent with high homology among iT3SS and fT3SS. This mode of action is similar to that previously described for INP1855, another hydroxyquinoline, against P. aeruginosa Thus, although acting by different mechanisms, INP0341 and INP1750 appear as useful inhibitors of the virulence of P. aeruginosa Hydroxyquinolines may have a broader spectrum of activity by the fact they act upon two virulence factors (iT3SS and fT3SS).
Asunto(s)
Antibacterianos/farmacología , Hidroxiquinolinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Sistemas de Secreción Tipo III/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Línea Celular , Humanos , Hidrazinas/farmacología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Virulencia/efectos de los fármacosRESUMEN
With the rise of multidrug resistance, Pseudomonas aeruginosa infections require alternative therapeutics. The injectisome (iT3SS) and flagellar (fT3SS) type III secretion systems are 2 virulence factors associated with poor clinical outcomes. iT3SS translocates toxins, rod, needle, or regulator proteins, and flagellin into the host cell cytoplasm and causes cytotoxicity and NLRC4-dependent inflammasome activation, which induces interleukin 1ß (IL-1ß) release and reduces interleukin 17 (IL-17) production and bacterial clearance. fT3SS ensures bacterial motility, attachment to the host cells, and triggers inflammation. INP1855 is an iT3SS inhibitor identified by in vitro screening, using Yersinia pseudotuberculosis Using a mouse model of P. aeruginosa pulmonary infection, we show that INP1855 improves survival after infection with an iT3SS-positive strain, reduces bacterial pathogenicity and dissemination and IL-1ß secretion, and increases IL-17 secretion. INP1855 also modified the cytokine balance in mice infected with an iT3SS-negative, fT3SS-positive strain. In vitro, INP1855 impaired iT3SS and fT3SS functionality, as evidenced by a reduction in secretory activity and flagellar motility and an increase in adenosine triphosphate levels. As a result, INP1855 decreased cytotoxicity mediated by toxins and by inflammasome activation induced by both laboratory strains and clinical isolates. We conclude that INP1855 acts by dual inhibition of iT3SS and fT3SS and represents a promising therapeutic approach.
Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Inflamasomas/metabolismo , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Análisis de Supervivencia , Resultado del TratamientoRESUMEN
Antibiotic combinations are often used for treating Pseudomonas aeruginosa infections but their efficacy toward intracellular bacteria has not been investigated so far. We have studied combinations of representatives of the main antipseudomonal classes (ciprofloxacin, meropenem, tobramycin, and colistin) against intracellular P. aeruginosa in a model of THP-1 monocytes in comparison with bacteria growing in broth, using the reference strain PAO1 and two clinical isolates (resistant to ciprofloxacin and meropenem, respectively). Interaction between drugs was assessed by checkerboard titration (extracellular model only), by kill curves, and by using the fractional maximal effect (FME) method, which allows studying the effects of combinations when dose-effect relationships are not linear. For drugs used alone, simple sigmoidal functions could be fitted to all concentration-effect relationships (extracellular and intracellular bacteria), with static concentrations close to (ciprofloxacin, colistin, and meropenem) or slightly higher than (tobramycin) the MIC and with maximal efficacy reaching the limit of detection in broth but only a 1 to 1.5 (colistin, meropenem, and tobramycin) to 2 to 3 (ciprofloxacin) log10 CFU decrease intracellularly. Extracellularly, all combinations proved additive by checkerboard titration but synergistic using the FME method and more bactericidal in kill curve assays. Intracellularly, all combinations proved additive only based on both FME and kill curve assays. Thus, although combinations appeared to modestly improve antibiotic activity against intracellular P. aeruginosa, they do not allow eradication of these persistent forms of infections. Combinations including ciprofloxacin were the most active (even against the ciprofloxacin-resistant strain), which is probably related to the fact this drug was the most effective alone intracellularly.
Asunto(s)
Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Línea Celular/efectos de los fármacos , Línea Celular/microbiología , Ciprofloxacina/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Meropenem , Pruebas de Sensibilidad Microbiana , Monocitos/efectos de los fármacos , Monocitos/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Tienamicinas/farmacología , Tobramicina/farmacologíaRESUMEN
The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species.
Asunto(s)
Guanidinas/uso terapéutico , Monocitos/microbiología , Inhibidores de la Síntesis de la Proteína/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pirimidinonas/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/uso terapéutico , Ceftazidima/uso terapéutico , Células Cultivadas , Ciprofloxacina/uso terapéutico , Daptomicina/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Fluoroquinolonas/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Moxifloxacino , Vancomicina/uso terapéuticoRESUMEN
The development of novel antimicrobial agents is urgently required to curb the widespread emergence of multidrug-resistant bacteria like colistin-resistant Pseudomonas aeruginosa. We previously synthesized a series of amphiphilic neamine derivatives active against bacterial membranes, among which 3',6-di-O-[(2"-naphthyl)propyl]neamine (3',6-di2NP), 3',6-di-O-[(2"-naphthyl)butyl]neamine (3',6-di2NB), and 3',6-di-O-nonylneamine (3',6-diNn) showed high levels of activity and low levels of cytotoxicity (L. Zimmermann et al., J. Med. Chem. 56:7691-7705, 2013). We have now further characterized the activity of these derivatives against colistin-resistant P. aeruginosa and studied their mode of action; specifically, we characterized their ability to interact with lipopolysaccharide (LPS) and to alter the bacterial outer membrane (OM). The three amphiphilic neamine derivatives were active against clinical colistin-resistant strains (MICs, about 2 to 8 µg/ml), The most active one (3',6-diNn) was bactericidal at its MIC and inhibited biofilm formation at 2-fold its MIC. They cooperatively bound to LPSs, increasing the outer membrane permeability. Grafting long and linear alkyl chains (nonyl) optimized binding to LPS and outer membrane permeabilization. The effects of amphiphilic neamine derivatives on LPS micelles suggest changes in the cross-bridging of lipopolysaccharides and disordering in the hydrophobic core of the micelles. The molecular shape of the 3',6-dialkyl neamine derivatives induced by the nature of the grafted hydrophobic moieties (naphthylalkyl instead of alkyl) and the flexibility of the hydrophobic moiety are critical for their fluidifying effect and their ability to displace cations bridging LPS. Results from this work could be exploited for the development of new amphiphilic neamine derivatives active against colistin-resistant P. aeruginosa.
Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Framicetina/farmacología , Lipopolisacáridos/química , Naftalenos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Aminoglicósidos/síntesis química , Antibacterianos/síntesis química , Sitios de Unión , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple , Framicetina/síntesis química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Naftalenos/síntesis química , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/crecimiento & desarrollo , Relación Estructura-ActividadRESUMEN
Pseudomonas aeruginosa invades epithelial and phagocytic cells, which may play an important role in the persistence of infection. We have developed a 24-h model of THP-1 monocyte infection with P. aeruginosa PAO1 in which bacteria are seen multiplying in vacuoles by electron microscopy. The model has been used to quantitatively assess antibiotic activity against intracellular and extracellular bacteria by using a pharmacodynamic approach (concentration-dependent experiments over a wide range of extracellular concentrations to calculate bacteriostatic concentrations [Cs] and maximal relative efficacies [Emax]; Hill-Langmuir equation). Using 16 antipseudomonal antibiotics (three aminoglycosides, nine ß-lactams, three fluoroquinolones, and colistin), dose-response curves were found to be undistinguishable for antibiotics of the same pharmacological class if data were expressed as a function of the corresponding MICs. Extracellularly, all of the antibiotics reached a bacteriostatic effect at their MIC, and their Emax exceeded the limit of detection (-4.5 log(10) CFU compared to the initial inoculum). Intracellularly, Cs values remained unchanged for ß-lactams, fluoroquinolones, and colistin but were approximately 10 times higher for aminoglycosides, whereas Emax values were markedly reduced (less negative), reaching -3 log(10) CFU for fluoroquinolones and only -1 to -1.5 log(10) CFU for all other antibiotics. The decrease in intracellular aminoglycoside potency (higher Cs) can be ascribed to the acid pH to which bacteria are exposed in vacuoles. The decrease in the Emax may reflect a reversible alteration of bacterial responsiveness to antibiotics in the intracellular milieu. The model may prove useful for comparison of antipseudomonal antibiotics to reduce the risk of persistence or relapse of pseudomonal infections.
Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Colistina/farmacología , Fluoroquinolonas/farmacología , Modelos Estadísticos , Pseudomonas aeruginosa/efectos de los fármacos , beta-Lactamas/farmacología , Transporte Biológico , Línea Celular , Permeabilidad de la Membrana Celular , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Cinética , Pruebas de Sensibilidad Microbiana , Monocitos/efectos de los fármacos , Monocitos/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/microbiologíaRESUMEN
BACKGROUND: Mycobacterium abscessus (MAB) is the mycobacterial species least susceptible to antimicrobials. Infections are difficult to treat, and cure rates are below 50% even after a combination of 4-5 drugs for many months. OBJECTIVES: To examine antimicrobial susceptibilities and treatment recommendations in light of what is known about mechanisms of resistance and pharmacodynamics/pharmacokinetics (PK/PD) interactions. SOURCES: Original papers on the topics of 'antimicrobials', 'susceptibility', 'treatment', and 'outcome' from 2019 onwards, in the context of the evidence brought by the guidelines published in 2020 for pulmonary infections. CONTENT: MAB is susceptible in vitro to only a few antimicrobials. Breakpoints were set by the Clinical and Laboratory Standards Institute and are revised by the European Committee on Antimicrobial Susceptibility Testing for epidemiological cut-off values. Innate resistance is due to multiple resistance mechanisms involving efflux pumps, inactivating enzymes, and low drug-target affinity. In addition, MAB may display acquired resistance to macrolides and amikacin through mutations in drug binding sites. Treatment outcomes are better for macrolide-based combinations and MAB subspecies massiliense. New compounds in the family of cyclines, oxazolidinones, and penem-ß-lactamase inhibitor combinations (described in another paper), as well as bedaquiline, a new antituberculous agent, are promising, but their efficacy remains to be proven. PK/PD studies, which are critical for establishing optimal dosing regimens, were mainly done for monotherapy and healthy individuals. IMPLICATIONS: Medical evidence is poor, and randomized clinical trials or standardized cohorts are needed to compare outcomes of patients with similar underlying disease, clinical characteristics, and identified MAB subspecies/sequevar. Microbiological diagnosis and susceptibility testing need to be harmonized to enable the comparison of agents and the testing of new compounds. Testing antimicrobial combinations requires new methods, especially for PK/PD parameters. Molecular testing may help in assessing MAB resistance prior to treatment. New antimicrobials need to be systematically tested against MAB to find an effective antimicrobial regimen.
RESUMEN
BACKGROUND: Macrolides show high minimum inhibitory concentrations (MICs) against Pseudomonas aeruginosa when tested in recommended media (cation-adjusted Muller-Hinton broth [CA-MHB]). Nevertheless, azithromycin is successfully used in cystic fibrosis patients, supposedly because of "nonantibiotic effects." METHODS: CA-MHB and Roswell Park Memorial Institute (RPMI) 1640 medium (used for growing eukaryotic cells) were compared for measuring azithromycin MICs (with or without Phe-Arg-ß-naphthylamide [PAßN], an efflux inhibitor), [(14)C]-clarithromycin accumulation, azithromycin-induced protein synthesis inhibition, oprM (encoding the outer-membrane protein coupled with MexAB and MexXY efflux systems) expression, outer-membrane permeability (tested with 1-N-phenylnaphthylamine and nitrocefin), and synergy (determined by checkerboard assay) between azithromycin and outer-membrane disrupting agents. Key experiments were repeated with CA-MHB supplemented with serum, mouse bronchoalveolar lavage fluid, other macrolides, and other gram-negative bacteria. RESULTS: Azithromycin MICs were ≥128 mg/L in CA-MHB, compared with 1-16 mg/L in RPMI 1640 medium, CA-MHB supplemented with serum, or bronchoalveolar lavage fluid (repeated for RPMI 1640 medium with clarithromycin, other macrolides, and other gram-negative bacteria). [(14)C]-clarithromycin accumulation was 2.2-fold higher in RPMI 1640 medium, compared with CA-MHB. Inhibition of >95% of protein synthesis was obtained with azithromycin at 16 mg/L in RPMI 1640 medium, compared with >512 mg/L in CA-MHB. Strains not expressing oprM showed an MIC of 4 mg/L in CA-MHB. PAßN decreased MICs in CA-MHB but not in RPMI 1640 medium. Real-time polymerase chain reaction showed downregulation of oprM by azithromycin in RPMI 1640 medium. Outer-membrane permeability was 3-4.5 times higher in RPMI 1640 medium or bronchoalveolar lavage fluid, compared with CA-MHB. Azithromycin combined with outer-membrane disrupting agents were synergistic in CA-MHB but indifferent in RPMI 1640 medium. CONCLUSIONS: Macrolides show antimicrobial activity against P. aeruginosa in eukaryotic media through increased uptake and reduced efflux. These data may help explain the clinical efficacy of macrolides against pseudomonal infections.
Asunto(s)
Antibacterianos/farmacología , Azitromicina/farmacología , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Cetólidos/farmacología , Proteínas de Transporte de Membrana/biosíntesis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Líquido del Lavado Bronquioalveolar , Permeabilidad de la Membrana Celular/efectos de los fármacos , Medios de Cultivo , Dipéptidos/farmacología , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Modelos BiológicosRESUMEN
The reduction in antimicrobial activity at high bacterial counts is a microbiological phenomenon known as the inoculum effect (IE). In a previous in vitro study, a significant IE was observed for polymyxin B (PMB) against a clinical isolate of Acinetobacter baumannii, and well described by a new pharmacokinetic-pharmacodynamic model. Few in vivo studies have investigated the impact of inoculum size on survival or antibiotic efficacy. Therefore, our objective was to confirm the influence of inoculum size of this A. baumannii clinical isolate on PMB in vivo effect over time. Pharmacokinetics and pharmacodynamics of PMB after a single subcutaneous administration (1, 15 and 40 mg/kg) were studied in a neutropenic murine thigh infection model. The impact of A. baumannii inoculum size (105, 106 and 107 CFU/thigh) on PMB efficacy was also evaluated. In vivo PMB PK was well described by a two-compartment model including saturable absorption from the subcutaneous injection site and linear elimination. The previous in vitro PD model was modified to adequately describe the decrease of PMB efficacy with increased inoculum size in infected mice. The IE was modeled as a decrease of 32% in the in vivo PMB bactericidal effect when the starting inoculum increases from 105 to 107 CFU/thigh. Although not as important as previously characterized in vitro an IE was confirmed in vivo.
RESUMEN
Resistance to colistin, one of the antibiotics of last resort against multidrug-resistant Gram-negative bacteria, is increasingly reported. Notably, MCR plasmids discovered in 2015 have now been reported worldwide in humans. To keep this antibiotic of last resort efficient, a way to tackle this mechanism seems essential. Terpene alcohols such as farnesol have been shown to improve the efficacy of some antibiotics. However, their high lipophilicity makes them difficult to use. This problem can be solved by encapsulating them in water-dispersible lipid nanoparticles (LNPs). The aim of this study was to discover, using checkerboard tests and time-kill curve experiments, an association between colistin and farnesol or geraniol loaded in LNPs, which would improve the efficacy of colistin against E. coli and, in particular, MCR-1 transconjugants. Then, the effect of the combination on E. coli inner membrane permeabilisation was evaluated using propidium iodide (PI) uptake and compared to human red blood cells plasma membrane permeabilisation. Both terpene alcohols were able to restore the susceptibility of E. coli J53 MCR-1 to colistin with the same efficacy (Emax = 16, i.e., colistin MIC was decreased from 8 to 0.5 mg/L). However, with an EC50 of 2.69 mg/L, farnesol was more potent than geraniol (EC50 = 39.49 mg/L). Time-kill studies showed a bactericidal effect on MCR-1 transconjugant 6 h after incubation, with no regrowth up to 30 h in the presence of 1 mg/L colistin (1/8 MIC) and 60 mg/L or 200 mg/L farnesol or geraniol, respectively. Colistin alone was more potent in increasing PI uptake rate in the susceptible strain (EC50 = 0.86 ± 0.08 mg/L) than in the MCR-1 one (EC50 = 7.38 ± 0.85 mg/L). Against the MCR-1 strain, farnesol-loaded LNP at 60 mg/L enhanced the colistin-induced inner membrane permeabilization effect up to 5-fold and also increased its potency as shown by the decrease in its EC50 from 7.38 ± 0.85 mg/L to 2.69 ± 0.25 mg/L. Importantly, no hemolysis was observed for LNPs loaded with farnesol or geraniol, alone or in combination with colistin, at the concentrations showing the maximum decrease in colistin MICs. The results presented here indicate that farnesol-loaded LNPs should be studied as combination therapy with colistin to prevent the development of resistance to this antibiotic of last resort.
RESUMEN
Intracellular bacteria are poorly responsive to antibiotic treatment. Pharmacological studies are thus needed to determine the antibiotics which are the most potent or effective against intracellular bacteria as well as to explore the reasons for poor bacterial responsiveness. An in vitro pharmacodynamic model is described, consisting of (1) phagocytosis of preopsonized bacteria by eukaryotic cells, (2) elimination of noninternalized bacteria with gentamicin, (3) incubation of infected cells with antibiotics, and (4) determination of surviving bacteria by viable cell counting and normalization of the counts based on sample protein content. The use of strains expressing fluorescent proteins under the control of an inducible promoter allows to follow intracellular bacterial division at the individual level and therefore to monitor bacterial persisters that do not multiply anymore.
Asunto(s)
Antibacterianos/farmacología , Bacterias , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana , Fagocitosis/efectos de los fármacosRESUMEN
BACKGROUND: Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown. METHODS: We developed a versatile method for genetic engineering in multi-drug resistant (MDR) bacteria, and used this method to delete tolC and specific antibiotic-resistance genes in 18 representative MDR clinical E. coli isolates. We determined efflux activity and minimal inhibitory concentrations for a diverse set of clinically relevant antibiotics in these mutants. We also deleted oprM in MDR P. aeruginosa strains and determined the impact on antibiotic susceptibility. FINDINGS: tolC deletion abolished detectable efflux activity in 15 out of 18 tested E. coli strains, and modulated antibiotic susceptibility in many strains. However, all mutant strains retained MDR status, primarily because of other, antibiotic-specific resistance genes. Deletion of oprM altered antibiotic susceptibility in a fraction of clinical P. aeruginosa isolates. INTERPRETATION: Efflux modulates antibiotic resistance in clinical MDR isolates of E. coli and P. aeruginosa. However, when other antimicrobial-resistance mechanisms are present, inhibition of MDR efflux pumps alone is often not sufficient to restore full susceptibility even for antibiotics with a dramatic impact of efflux in laboratory strains. We propose that development of novel antibiotics should include target validation in clinical MDR isolates. FUND: Innovative Medicines Initiative of European Union and EFPIA, Schweizerischer Nationalfonds, Swiss National Research Program 72, EU Marie Sklodowska-Curie program. The funders played no role in design, data collection, data analysis, interpretation, writing of the report, and in the decision to submit the paper for publication.