Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 23(11): 665-679, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35581355

RESUMEN

Genome-wide association studies using large-scale genome and exome sequencing data have become increasingly valuable in identifying associations between genetic variants and disease, transforming basic research and translational medicine. However, this progress has not been equally shared across all people and conditions, in part due to limited resources. Leveraging publicly available sequencing data as external common controls, rather than sequencing new controls for every study, can better allocate resources by augmenting control sample sizes or providing controls where none existed. However, common control studies must be carefully planned and executed as even small differences in sample ascertainment and processing can result in substantial bias. Here, we discuss challenges and opportunities for the robust use of common controls in high-throughput sequencing studies, including study design, quality control and statistical approaches. Thoughtful generation and use of large and valuable genetic sequencing data sets will enable investigation of a broader and more representative set of conditions, environments and genetic ancestries than otherwise possible.


Asunto(s)
Exoma , Estudio de Asociación del Genoma Completo , Exoma/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación del Exoma
2.
Nature ; 583(7814): 83-89, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460305

RESUMEN

A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0-11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing.


Asunto(s)
Variación Genética , Genoma Humano/genética , Secuenciación Completa del Genoma , Alelos , Estudios de Casos y Controles , Epigénesis Genética , Femenino , Dosificación de Gen/genética , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Anotación de Secuencia Molecular , Sitios de Carácter Cuantitativo , Grupos Raciales/genética , Programas Informáticos
3.
Hum Mol Genet ; 32(5): 873-882, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36308435

RESUMEN

Inflammatory bowel disease (IBD) is an immune-mediated chronic intestinal disorder with major phenotypes: ulcerative colitis (UC) and Crohn's disease (CD). Multiple studies have identified over 240 IBD susceptibility loci. However, most studies have centered on European (EUR) and East Asian (EAS) populations. The prevalence of IBD in non-EUR, including African Americans (AAs), has risen in recent years. Here we present the first attempt to identify loci in AAs using a trans-ancestry Bayesian approach (MANTRA) accounting for heterogeneity between diverse ancestries while allowing for the similarity between closely related populations. We meta-analyzed genome-wide association studies (GWAS) and Immunochip data from a 2015 EUR meta-analysis of 38 155 IBD cases and 48 485 controls and EAS Immunochip study of 2824 IBD cases and 3719 controls, and our recent AA IBD GWAS of 2345 cases and 5002 controls. Across the major IBD phenotypes, we found significant evidence for 92% of 205 loci lead SNPs from the 2015 meta-analysis, but also for three IBD loci only established in latter studies. We detected 20 novel loci, all containing immunity-related genes or genes with other evidence for IBD or immune-mediated disease relevance: PLEKHG5;TNFSFR25 (encoding death receptor 3, receptor for TNFSF15 gene product TL1A), XKR6, ELMO1, BC021024;PI4KB;PSMD4 and APLP1 for IBD; AUTS2, XKR6, OSER1, TET2;AK094561, BCAP29 and APLP1 for CD; and GABBR1;MOG, DQ570892, SPDEF;ILRUN, SMARCE1;CCR7;KRT222;KRT24;KRT25, ANKS1A;TCP11, IL7, LRRC18;WDFY4, XKR6 and TNFSF4 for UC. Our study highlights the value of combining low-powered genomic studies from understudied populations of diverse ancestral backgrounds together with a high-powered study to enable novel locus discovery, including potentially important therapeutic IBD gene targets.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Teorema de Bayes , Negro o Afroamericano , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Pueblos del Este de Asia , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Proteínas de la Membrana/genética , Ligando OX40/genética , Polimorfismo de Nucleótido Simple , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Pueblo Europeo
4.
Am J Hum Genet ; 109(4): 669-679, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35263625

RESUMEN

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Humanos , Estilo de Vida , Polimorfismo de Nucleótido Simple , Transcriptoma
5.
Nucleic Acids Res ; 51(D1): D1300-D1311, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350676

RESUMEN

Large biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.


Asunto(s)
Genoma Humano , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Genómica , Genotipo , Variación Genética
6.
Hum Genet ; 142(2): 217-230, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36251081

RESUMEN

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two major neurodevelopmental disorders that frequently co-occur. However, the genetic mechanism of the co-occurrence remains unclear. The New Jersey Language and Autism Genetics Study (NJLAGS) collected more than 100 families with at least one member affected by ASD. NJLAGS families show a high prevalence of ADHD and provide a good opportunity to study shared genetic risk factors for ASD and ADHD. The linkage study of the NJLAGS families revealed regions on chromosomes 12 and 17 that are significantly associated with ADHD. Using whole-genome sequencing data on 272 samples from 73 NJLAGS families, we identified potential risk genes for ASD and ADHD. Within the linkage regions, we identified 36 genes that are associated with ADHD using a pedigree-based gene prioritization approach. KDM6B (Lysine Demethylase 6B) is the highest-ranking gene, which is a known risk gene for neurodevelopmental disorders, including ASD and ADHD. At the whole-genome level, we identified 207 candidate genes from the analysis of both small variants and structure variants, including both known and novel genes. Using enrichment and protein-protein interaction network analyses, we identified gene ontology terms and pathways enriched for ASD and ADHD candidate genes, such as cilia function and cation channel activity. Candidate genes and pathways identified in our study improve the understanding of the genetic etiology of ASD and ADHD and will lead to new diagnostic or therapeutic interventions for ASD and ADHD in the future.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno Autístico/genética , Prevalencia , Factores de Riesgo , Histona Demetilasas con Dominio de Jumonji
7.
PLoS Genet ; 16(3): e1008684, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32226016

RESUMEN

Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.


Asunto(s)
Lípidos/sangre , Lípidos/genética , Grupos Raciales/genética , Bases de Datos Genéticas , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Lípidos/análisis , Masculino , Metagenómica/métodos , Grupos Minoritarios , Herencia Multifactorial/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Estados Unidos/epidemiología
8.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686052

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Desarrollo del Lenguaje , Humanos , Trastorno del Espectro Autista/genética , Lenguaje , Encéfalo , Trastornos del Desarrollo del Lenguaje/genética
9.
Diabetologia ; 65(3): 477-489, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951656

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. METHODS: We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40% European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. RESULTS: Four novel associations were identified (p < 5 × 10-9), including three loci associated with fasting insulin, and a novel, low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at the known PPP1R3B locus in transethnic meta-analysis. CONCLUSIONS/INTERPRETATION: Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the continued importance of conducting genetic studies in diverse populations. DATA AVAILABILITY: Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI GWAS catalog ( https://www.ebi.ac.uk/gwas/downloads/summary-statistics ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Glucemia/genética , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética
10.
Genet Med ; 24(4): 784-797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35148959

RESUMEN

PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients.


Asunto(s)
Exoma , Genómica , Estudios de Asociación Genética , Humanos , Fenotipo , Secuenciación del Exoma
11.
BMC Infect Dis ; 22(1): 404, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468749

RESUMEN

BACKGROUND: The Centers for Disease Control and Prevention contracted with laboratories to sequence the SARS-CoV-2 genome from positive samples across the United States to enable public health officials to investigate the impact of variants on disease severity as well as the effectiveness of vaccines and treatment. Herein we present the initial results correlating RT-PCR quality control metrics with sample collection and sequencing methods from full SARS-CoV-2 viral genomic sequencing of 24,441 positive patient samples between April and June 2021. METHODS: RT-PCR confirmed (N Gene Ct value < 30) positive patient samples, with nucleic acid extracted from saliva, nasopharyngeal and oropharyngeal swabs were selected for viral whole genome SARS-CoV-2 sequencing. Sequencing was performed using Illumina COVIDSeq™ protocol on either the NextSeq550 or NovaSeq6000 systems. Informatic variant calling, and lineage analysis were performed using DRAGEN COVID Lineage applications on Illumina's Basespace cloud analytical system. All sequence data and variant calls were uploaded to NCBI and GISAID. RESULTS: An association was observed between higher sequencing coverage, quality, and samples with a lower Ct value, with < 27 being optimal, across both sequencing platforms and sample collection methods. Both nasopharyngeal swabs and saliva samples were found to be optimal samples of choice for SARS-CoV-2 surveillance sequencing studies, both in terms of strain identification and sequencing depth of coverage, with NovaSeq 6000 providing higher coverage than the NextSeq 550. The most frequent variants identified were the B.1.617.2 Delta (India) and P.1 Gamma (Brazil) variants in the samples sequenced between April 2021 and June 2021. At the time of submission, the most common variant > 99% of positives sequenced was Omicron. CONCLUSION: These initial analyses highlight the importance of sequencing platform, sample collection methods, and RT-PCR Ct values in guiding surveillance efforts. These surveillance studies evaluating genetic changes of SARS-CoV-2 have been identified as critical by the CDC that can affect many aspects of public health including transmission, disease severity, diagnostics, therapeutics, and vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiología
12.
Nature ; 518(7538): 187-196, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25673412

RESUMEN

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.


Asunto(s)
Tejido Adiposo/metabolismo , Distribución de la Grasa Corporal , Estudio de Asociación del Genoma Completo , Insulina/metabolismo , Sitios de Carácter Cuantitativo/genética , Adipocitos/metabolismo , Adipogénesis/genética , Factores de Edad , Índice de Masa Corporal , Epigénesis Genética , Europa (Continente)/etnología , Femenino , Genoma Humano/genética , Humanos , Resistencia a la Insulina/genética , Masculino , Modelos Biológicos , Neovascularización Fisiológica/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple/genética , Grupos Raciales/genética , Caracteres Sexuales , Transcripción Genética/genética , Relación Cintura-Cadera
13.
Nature ; 518(7538): 197-206, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25673413

RESUMEN

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Adiposidad/genética , Factores de Edad , Metabolismo Energético/genética , Europa (Continente)/etnología , Femenino , Predisposición Genética a la Enfermedad/genética , Ácido Glutámico/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Masculino , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Grupos Raciales/genética , Sinapsis/metabolismo
14.
Genet Med ; 21(4): 798-812, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30655598

RESUMEN

Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Heterogeneidad Genética , Genoma Humano/genética , Genómica/tendencias , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , National Institutes of Health (U.S.) , Linaje , Estados Unidos , Secuenciación del Exoma/métodos
15.
Hum Mol Genet ; 25(24): 5500-5512, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28426890

RESUMEN

Genome-wide association studies have identified over 150 loci associated with lipid traits, however, no large-scale studies exist for Hispanics and other minority populations. Additionally, the genetic architecture of lipid-influencing loci remains largely unknown. We performed one of the most racially/ethnically diverse fine-mapping genetic studies of HDL-C, LDL-C, and triglycerides to-date using SNPs on the MetaboChip array on 54,119 individuals: 21,304 African Americans, 19,829 Hispanic Americans, 12,456 Asians, and 530 American Indians. The majority of signals found in these groups generalize to European Americans. While we uncovered signals unique to racial/ethnic populations, we also observed systematically consistent lipid associations across these groups. In African Americans, we identified three novel signals associated with HDL-C (LPL, APOA5, LCAT) and two associated with LDL-C (ABCG8, DHODH). In addition, using this population, we refined the location for 16 out of the 58 known MetaboChip lipid loci. These results can guide tailored screening efforts, reveal population-specific responses to lipid-lowering medications, and aid in the development of new targeted drug therapies.


Asunto(s)
HDL-Colesterol/genética , LDL-Colesterol/genética , Estudio de Asociación del Genoma Completo , Lípidos/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Negro o Afroamericano/genética , Apolipoproteína A-V/genética , Pueblo Asiatico/genética , Femenino , Hispánicos o Latinos/genética , Humanos , Indígenas Norteamericanos/genética , Lipoproteína Lipasa/genética , Masculino , Triglicéridos/genética
16.
Hum Mol Genet ; 25(19): 4350-4368, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577874

RESUMEN

The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10-14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10-4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10-8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10-9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10-7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.


Asunto(s)
Enfermedades Cardiovasculares/genética , Estudio de Asociación del Genoma Completo , Ventrículos Cardíacos/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Negro o Afroamericano/genética , Alelos , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/fisiopatología , Electrocardiografía , Femenino , Genotipo , Humanos , Masculino , Miocardio/patología , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
17.
Diabetologia ; 60(12): 2384-2398, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28905132

RESUMEN

AIMS/HYPOTHESIS: Elevated levels of fasting glucose and fasting insulin in non-diabetic individuals are markers of dysregulation of glucose metabolism and are strong risk factors for type 2 diabetes. Genome-wide association studies have discovered over 50 SNPs associated with these traits. Most of these loci were discovered in European populations and have not been tested in a well-powered multi-ethnic study. We hypothesised that a large, ancestrally diverse, fine-mapping genetic study of glycaemic traits would identify novel and population-specific associations that were previously undetectable by European-centric studies. METHODS: A multiethnic study of up to 26,760 unrelated individuals without diabetes, of predominantly Hispanic/Latino and African ancestries, were genotyped using the Metabochip. Transethnic meta-analysis of racial/ethnic-specific linear regression analyses were performed for fasting glucose and fasting insulin. We attempted to replicate 39 fasting glucose and 17 fasting insulin loci. Genetic fine-mapping was performed through sequential conditional analyses in 15 regions that included both the initially reported SNP association(s) and denser coverage of SNP markers. In addition, Metabochip-wide analyses were performed to discover novel fasting glucose and fasting insulin loci. The most significant SNP associations were further examined using bioinformatic functional annotation. RESULTS: Previously reported SNP associations were significantly replicated (p ≤ 0.05) in 31/39 fasting glucose loci and 14/17 fasting insulin loci. Eleven glycaemic trait loci were refined to a smaller list of potentially causal variants through transethnic meta-analysis. Stepwise conditional analysis identified two loci with independent secondary signals (G6PC2-rs477224 and GCK-rs2908290), which had not previously been reported. Population-specific conditional analyses identified an independent signal in G6PC2 tagged by the rare variant rs77719485 in African ancestry. Further Metabochip-wide analysis uncovered one novel fasting insulin locus at SLC17A2-rs75862513. CONCLUSIONS/INTERPRETATION: These findings suggest that while glycaemic trait loci often have generalisable effects across the studied populations, transethnic genetic studies help to prioritise likely functional SNPs, identify novel associations that may be population-specific and in turn have the potential to influence screening efforts or therapeutic discoveries. DATA AVAILABILITY: The summary statistics from each of the ancestry-specific and transethnic (combined ancestry) results can be found under the PAGE study on dbGaP here: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356.v1.p1.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Ayuno/sangre , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Insulina/sangre , Masculino , Polimorfismo de Nucleótido Simple/genética , Población Blanca
19.
Behav Genet ; 47(2): 193-201, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27826669

RESUMEN

Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2  = 0.20) and FM (h 2  = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.


Asunto(s)
Umbral Auditivo/fisiología , Dislexia/genética , Lectura , Estimulación Acústica , Teorema de Bayes , Dislexia/psicología , Familia , Femenino , Genética Conductual/métodos , Humanos , Masculino , Biología Molecular/métodos , Linaje
20.
Proc Natl Acad Sci U S A ; 111(36): E3815-24, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157170

RESUMEN

Precise spatiotemporal control of mRNA translation machinery is essential to the development of highly complex systems like the neocortex. However, spatiotemporal regulation of translation machinery in the developing neocortex remains poorly understood. Here, we show that an RNA-binding protein, Hu antigen R (HuR), regulates both neocorticogenesis and specificity of neocortical translation machinery in a developmental stage-dependent manner in mice. Neocortical absence of HuR alters the phosphorylation states of initiation and elongation factors in the core translation machinery. In addition, HuR regulates the temporally specific positioning of functionally related mRNAs into the active translation sites, the polysomes. HuR also determines the specificity of neocortical polysomes by defining their combinatorial composition of ribosomal proteins and initiation and elongation factors. For some HuR-dependent proteins, the association with polysomes likewise depends on the eukaryotic initiation factor 2 alpha kinase 4, which associates with HuR in prenatal developing neocortices. Finally, we found that deletion of HuR before embryonic day 10 disrupts both neocortical lamination and formation of the main neocortical commissure, the corpus callosum. Our study identifies a crucial role for HuR in neocortical development as a translational gatekeeper for functionally related mRNA subgroups and polysomal protein specificity.


Asunto(s)
Proteínas ELAV/metabolismo , Neocórtex/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Cuerpo Calloso/embriología , Cuerpo Calloso/metabolismo , Proteína 1 Similar a ELAV , Factor 2 Eucariótico de Iniciación/metabolismo , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Mitosis , Modelos Biológicos , Neocórtex/embriología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/metabolismo , Neurogénesis , Neuroglía/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Factores de Tiempo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA