Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(4): 737-746, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831509

RESUMEN

Identification of genes and molecular pathways with congruent profiles in the proteomic and transcriptomic datasets may result in the discovery of promising transcriptomic biomarkers that would be more relevant to phenotypic changes. In this study, we conducted comparative analysis of 943 paired RNA and proteomic profiles obtained for the same samples of seven human cancer types from The Cancer Genome Atlas (TCGA) and NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) [two major open human cancer proteomic and transcriptomic databases] that included 15,112 protein-coding genes and 1611 molecular pathways. Overall, our findings demonstrated statistically significant improvement of the congruence between RNA and proteomic profiles when performing analysis at the level of molecular pathways rather than at the level of individual gene products. Transition to the molecular pathway level of data analysis increased the correlation to 0.19-0.57 (Pearson) and 0.14-057 (Spearman), or 2-3-fold for some cancer types. Evaluating the gain of the correlation upon transition to the data analysis the pathway level can be used to refine the omics data by identifying outliers that can be excluded from the comparison of RNA and proteomic profiles. We suggest using sample- and gene-wise correlations for individual genes and molecular pathways as a measure of quality of RNA/protein paired molecular data. We also provide a database of human genes, molecular pathways, and samples related to the correlation between RNA and protein products to facilitate an exploration of new cancer transcriptomic biomarkers and molecular mechanisms at different levels of human gene expression.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteómica/métodos , Transcriptoma , Bases de Datos Genéticas , ARN/metabolismo , ARN/genética , Perfilación de la Expresión Génica , Exactitud de los Datos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica
2.
Biochemistry (Mosc) ; 89(3): 487-506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648768

RESUMEN

Lapatinib is a targeted therapeutic inhibiting HER2 and EGFR proteins. It is used for the therapy of HER2-positive breast cancer, although not all the patients respond to it. Using human blood serum samples from 14 female donors (separately taken or combined), we found that human blood serum dramatically abolishes the lapatinib-mediated inhibition of growth of the human breast squamous carcinoma SK-BR-3 cell line. This antagonism between lapatinib and human serum was associated with cancelation of the drug induced G1/S cell cycle transition arrest. RNA sequencing revealed 308 differentially expressed genes in the presence of lapatinib. Remarkably, when combined with lapatinib, human blood serum showed the capacity of restoring both the rate of cell growth, and the expression of 96.1% of the genes expression of which were altered by the lapatinib treatment alone. Co-administration of EGF with lapatinib also restores the cell growth and cancels alteration of expression of 95.8% of the genes specific to lapatinib treatment of SK-BR-3 cells. Differential gene expression analysis also showed that in the presence of human serum or EGF, lapatinib was unable to inhibit the Toll-Like Receptor signaling pathway and alter expression of genes linked to the Gene Ontology term of Focal adhesion.


Asunto(s)
Proliferación Celular , Receptores ErbB , Lapatinib , Receptor ErbB-2 , Humanos , Lapatinib/farmacología , Receptor ErbB-2/metabolismo , Receptores ErbB/metabolismo , Femenino , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Suero/metabolismo
3.
Front Oncol ; 14: 1415801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919532

RESUMEN

Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.

4.
Asian Pac J Cancer Prev ; 25(6): 1987-1995, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38918660

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the relationship of soil pollution factors such as heavy metal ions with the incidence of cancer in the Kyzylorda region of Kazakhstan. METHODS: Concentrations of heavy metal ions in the soils of different sites of Kyzylorda region, Kazakhstan, were sampled and correlated with incidence of cancer in 2021. RESULTS: Chromium content in the soil exceeded maximum permissible concentration (MPC) in the samples for all sites except Kazaly and Shieli, and the highest excess of 2.8 MPC was found in Terenozek. Content of copper, lead, and cobalt ions was also increased and varied in the range 1.9-15.4, 1.2-4, and 1.2-2.44 MPC, respectively. In addition, lung cancer incidence was statistically significantly correlated with soil concentration to MPC ratio of copper, cobalt, and lead; colorectal cancer was correlated with soil concentration of chromium. Cases of invasive cancer and mutations were recorded Terenozek and Kyzylorda areas. CONCLUSION: The higher the soil concentration correlate with higher cancer incidence in Kyzylorda region, Kazakhstan.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Kazajstán/epidemiología , Metales Pesados/análisis , Incidencia , Contaminantes del Suelo/análisis , Neoplasias/epidemiología , Suelo/química , Masculino , Femenino , Pronóstico , Estudios de Seguimiento
5.
Front Genet ; 15: 1401100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859942

RESUMEN

The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.

6.
Cells ; 13(1)2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38201251

RESUMEN

Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated with the development and progression of many cancer types, which makes it an attractive target for molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors (TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling. While EGFR-specific mAbs and three generations of TKIs have demonstrated clinical efficacy in various settings, molecular evolution of tumors leads to apparent and sometimes inevitable resistance to current therapeutics, which highlights the need for deeper research in this field. Here, we tried to provide a comprehensive and systematic overview of the rationale, molecular mechanisms, and clinical significance of the current EGFR-targeting drugs, highlighting potential candidate molecules in development. We summarized the underlying mechanisms of resistance and available personalized predictive approaches that may lead to improved efficacy of EGFR-targeted therapies. We also discuss recent developments and the use of specific therapeutic strategies, such as multi-targeting agents and combination therapies, for overcoming cancer resistance to EGFR-specific drugs.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias , Humanos , Biomarcadores , Receptores ErbB , Neoplasias/tratamiento farmacológico , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA