Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 168(4): 1338-50, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26082400

RESUMEN

To increase both the yield potential and stability of crops, integrated breeding strategies are used that have mostly a direct genetic basis, but the utility of epigenetics to improve complex traits is unclear. A better understanding of the status of the epigenome and its contribution to agronomic performance would help in developing approaches to incorporate the epigenetic component of complex traits into breeding programs. Starting from isogenic canola (Brassica napus) lines, epilines were generated by selecting, repeatedly for three generations, for increased energy use efficiency and drought tolerance. These epilines had an enhanced energy use efficiency, drought tolerance, and nitrogen use efficiency. Transcriptome analysis of the epilines and a line selected for its energy use efficiency solely revealed common differentially expressed genes related to the onset of stress tolerance-regulating signaling events. Genes related to responses to salt, osmotic, abscisic acid, and drought treatments were specifically differentially expressed in the drought-tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine-4 of histone 3, further supported the phenotype by targeting drought-responsive genes and facilitating the transcription of the differentially expressed genes. From these results, we conclude that the canola epigenome can be shaped by selection to increase energy use efficiency and stress tolerance. Hence, these findings warrant the further development of strategies to incorporate epigenetics into breeding.


Asunto(s)
Ácido Abscísico/metabolismo , Brassica napus/genética , Epigénesis Genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma , Brassica napus/fisiología , Cruzamiento , Productos Agrícolas , Sequías , Metabolismo Energético , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ósmosis , Fenotipo , Análisis de Secuencia de ARN , Estrés Fisiológico
2.
Planta ; 218(3): 379-87, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14534787

RESUMEN

Oilseed rape ( Brassica napus L.) genotypes with no or small petals are thought to have advantages in photosynthetic activity. The flowers of field-grown oilseed rape form a bright-yellow canopy that reflects and absorbs nearly 60% of the photosynthetically active radiation (PAR), causing a severe yield penalty. Reducing the size of the petals and/or removing the reflecting colour will improve the transmission of PAR to the leaves and is expected to increase the crop productivity. In this study the 'hairpin' RNA-mediated (hpRNA) gene silencing technology was implemented in Arabidopsis thaliana (L.) Heynh. and B. napus to silence B-type MADS-box floral organ identity genes in a second-whorl-specific manner. In Arabidopsis, silencing of B-type MADS-box genes was obtained by expressing B. napus APETALA3( BAP3) or PISTILLATA ( BPI) homologous self-complementary hpRNA constructs under control of the Arabidopsis A-type MADS-box gene APETALA1 ( AP1) promoter. In B. napus, silencing of the BPI gene family was achieved by expressing a similar hpRNA construct as used in Arabidopsis under the control of a chimeric promoter consisting of a modified petal-specific Arabidopsis AP3 promoter fragment fused to the AP1 promoter. In this way, transgenic plants were generated producing male fertile flowers in which the petals were converted into sepals ( Arabidopsis) or into sepaloid petals ( B. napus). These novel flower phenotypes were stable and heritable in both species.


Asunto(s)
Arabidopsis/genética , Brassica napus/genética , Flores/genética , Silenciador del Gen , Plantas Modificadas Genéticamente/genética , ARN de Planta/química , ARN de Planta/genética , Secuencia de Bases , Cartilla de ADN , Flores/anatomía & histología , Técnicas Genéticas , Conformación de Ácido Nucleico , Fenotipo , Plásmidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA