Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genet Sel Evol ; 55(1): 39, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308823

RESUMEN

BACKGROUND: Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS: The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS: This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.


Asunto(s)
Hipertermia Inducida , Oncorhynchus mykiss , Animales , Estudio de Asociación del Genoma Completo , Fenotipo , Genotipo
2.
Sci Rep ; 14(1): 12376, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811794

RESUMEN

Arachidonic acid (C20: 4n-6, AA) plays a fundamental role in fish physiology, influencing growth, survival and stress resistance. However, imbalances in dietary AA can have detrimental effects on fish health and performance. Optimal AA requirements for rainbow trout have not been established. This study aimed to elucidate the effects of varying dietary AA levels on survival, growth, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capacity, oxylipin profiles, lipid peroxidation, and stress resistance of rainbow trout fry. Over a period of eight weeks, 4000 female rainbow trout fry at the resorptive stage (0.12 g) from their first feeding were fed diets with varying levels of AA (0.6%, 1.1% or 2.5% of total fatty acids) while survival and growth metrics were closely monitored. The dietary trial was followed by an acute confinement stress test. Notably, while the fatty acid profiles of the fish reflected dietary intake, those fed an AA-0.6% diet showed increased expression of elongase5, highlighting their inherent ability to produce LC-PUFAs from C18 PUFAs and suggesting potential AA or docosapentaenoic acidn-6 (DPAn-6) biosynthesis. However, even with this biosynthetic capacity, the trout fed reduced dietary AA had higher mortality rates. The diet had no effect on final weight (3.38 g on average for the three diets). Conversely, increased dietary AA enhanced eicosanoid production from AA, suggesting potential inflammatory and oxidative consequences. This was further evidenced by an increase in non-enzymatic lipid oxidation metabolites, particularly in the AA-2.5% diet group, which had higher levels of phytoprostanes and isoprostanes, markers of cellular oxidative damage. Importantly, the AA-1.1% diet proved to be particularly beneficial for stress resilience. This was evidenced by higher post-stress turnover rates of serotonin and dopamine, neurotransmitters central to the fish's stress response. In conclusion, a dietary AA intake of 1.1% of total fatty acids appears to promote overall resilience in rainbow trout fry.


Asunto(s)
Ácido Araquidónico , Ácidos Grasos Insaturados , Oncorhynchus mykiss , Oxilipinas , Estrés Fisiológico , Animales , Oncorhynchus mykiss/metabolismo , Oxilipinas/metabolismo , Ácido Araquidónico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
3.
J Anim Sci Biotechnol ; 13(1): 33, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35264245

RESUMEN

BACKGROUND: The broodstock diet, and in particular the lipid and fatty acid composition of the diet, is known to play a key role in reproductive efficiency and survival of the progeny in fish. A major problem when replacing both fish meal and fish oil by plant sources is the lack of n-3 long chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). To address this problem, we studied the effect of the plant-based diet supplemented with Schizochytrium sp. microalgae, source of DHA, compared to a conventional commercial diet rich in fish meal and fish oil on reproductive performance and egg quality and the consequences on progeny, in female rainbow trout broodstock. RESULTS: The results demonstrated that DHA-rich microalgae supplementation in a plant-based diet allowed for the maintenance of reproductive performance and egg quality comparable to a conventional commercial feed rich in fish meal and fish oil and led to an increased significant fry survival after resorption. Moreover, when females were fed a plant-based diet supplemented with micro-algae, the 4-month-old progenies showed a significant higher growth when they were challenged with a similar diet as broodstock during 1 month. We provide evidence for metabolic programming in which the maternal dietary induced significant protracted effects on lipid metabolism of progeny. CONCLUSIONS: The present study demonstrates that supplementation of a plant-based diet with DHA-rich microalgae can be an effective alternative to fish meal and fish oil in rainbow trout broodstock aquafeed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA