Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(30): e2201160119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867834

RESUMEN

Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)-rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates.


Asunto(s)
Acanthaceae , Ácidos Grasos Monoinsaturados , Proteínas de Plantas , Estearoil-CoA Desaturasa , Acanthaceae/metabolismo , Proteína Transportadora de Acilo/metabolismo , Evolución Molecular , Ácidos Grasos Monoinsaturados/metabolismo , Mutagénesis , Aceites de Plantas/química , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/enzimología , Estearoil-CoA Desaturasa/análisis , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
2.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38690785

RESUMEN

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Asunto(s)
Arabidopsis , Celulosa , Glucosilceramidas , Glucosiltransferasas , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Celulosa/metabolismo , Celulosa/biosíntesis , Glucosilceramidas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/análogos & derivados , Pared Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723068

RESUMEN

Virtually all land plants are coated in a cuticle, a waxy polyester that prevents nonstomatal water loss and is important for heat and drought tolerance. Here, we describe a likely genetic basis for a divergence in cuticular wax chemistry between Sorghum bicolor, a drought tolerant crop widely cultivated in hot climates, and its close relative Zea mays (maize). Combining chemical analyses, heterologous expression, and comparative genomics, we reveal that: 1) sorghum and maize leaf waxes are similar at the juvenile stage but, after the juvenile-to-adult transition, sorghum leaf waxes are rich in triterpenoids that are absent from maize; 2) biosynthesis of the majority of sorghum leaf triterpenoids is mediated by a gene that maize and sorghum both inherited from a common ancestor but that is only functionally maintained in sorghum; and 3) sorghum leaf triterpenoids accumulate in a spatial pattern that was previously shown to strengthen the cuticle and decrease water loss at high temperatures. These findings uncover the possibility for resurrection of a cuticular triterpenoid-synthesizing gene in maize that could create a more heat-tolerant water barrier on the plant's leaf surfaces. They also provide a fundamental understanding of sorghum leaf waxes that will inform efforts to divert surface carbon to intracellular storage for bioenergy and bioproduct innovations.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Sorghum/genética , Sorghum/metabolismo , Esteroides/biosíntesis , Ceras/metabolismo , Adaptación Biológica , Biología Computacional , Sequías , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Genoma de Planta , Estructura Molecular , Filogenia , Sorghum/clasificación , Esteroides/química , Triterpenos/metabolismo , Ceras/química , Zea mays/genética , Zea mays/metabolismo
4.
Plant J ; 111(4): 954-965, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35749584

RESUMEN

Plants are able to construct lineage-specific natural products from a wide array of their core metabolic pathways. Considerable progress has been made toward documenting and understanding, for example, phenylpropanoid natural products derived from phosphoenolpyruvate via the shikimate pathway, terpenoid compounds built using isopentyl pyrophosphate, and alkaloids generated by the extensive modification of amino acids. By comparison, natural products derived from fatty acids have received little attention, except for unusual fatty acids in seed oils and jasmonate-like oxylipins. However, scattered but numerous reports show that plants are able to generate many structurally diverse compounds from fatty acids, including some with highly elaborate and unique structural features that have novel bioproduct functionalities. Furthermore, although recent work has shed light on multiple new fatty acid natural product biosynthesis pathways and products in diverse plant species, these discoveries have not been reviewed. The aims of this work, therefore, are to (i) review and systematize our current knowledge of the structures and biosynthesis of fatty acid-derived natural products that are not seed oils or jasmonate-type oxylipins, specifically, polyacetylenic, very-long-chain, and aromatic fatty acid-derived natural products, and (ii) suggest priorities for future investigative steps that will bring our knowledge of fatty acid-derived natural products closer to the levels of knowledge that we have attained for other phytochemical classes.


Asunto(s)
Productos Biológicos , Oxilipinas , Productos Biológicos/metabolismo , Ácidos Grasos/metabolismo , Oxilipinas/metabolismo , Aceites de Plantas/metabolismo , Plantas/metabolismo
5.
Metab Eng ; 79: 66-77, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429412

RESUMEN

Vitamin E tocochromanols are generated in plants by prenylation of homogentisate using geranylgeranyl diphosphate (GGDP) for tocotrienol biosynthesis and phytyl diphosphate (PDP) for tocopherol biosynthesis. Homogentisate geranylgeranyl transferase (HGGT), which uses GGDP for prenylation, is a proven target for oilseed tocochromanol biofortification that effectively bypasses the chlorophyll-linked pathway that limits PDP for vitamin E biosynthesis. In this report, we explored the feasibility of maximizing tocochromanol production in the oilseed crop camelina (Camelina sativa) by combining seed-specific HGGT expression with increased biosynthesis and/or reduced homogentisate catabolism. Plastid-targeted Escherichia coli TyrA-encoded chorismate mutase/prephenate dehydrogenase and Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) cDNA were co-expressed in seeds to bypass feedback-regulated steps and increase flux into homogentisate biosynthesis. Homogentisate catabolism was also suppressed by seed-specific RNAi of the gene for homogentisate oxygenase (HGO), which initiates homogentisate degradation. In the absence of HGGT expression, tocochromanols were increased by ∼2.5-fold with HPPD/TyrA co-expression, and ∼1.4-fold with HGO suppression compared to levels in non-transformed seeds. No further increase in tocochromanols was observed in HPPD/TyrA lines with the addition of HGO RNAi. HGGT expression alone increased tocochromanol concentrations in seeds by âˆ¼four-fold to ≤1400 µg/g seed weight. When combined with HPPD/TyrA co-expression, we obtained an additional three-fold increase in tocochromanol concentrations indicating that homogentisate concentrations limit HGGT's capacity for maximal tocochromanol production. The addition of HGO RNAi further increased tocochromanol concentrations to 5000 µg/g seed weight, an unprecedented tocochromanol concentration in an engineered oilseed. Metabolomic data obtained from engineered seeds provide insights into phenotypic changes associated with "extreme" tocochromanol production.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Dioxigenasas , Tocotrienoles , Vitamina E , Tocotrienoles/metabolismo , Biofortificación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Plant Cell ; 32(8): 2474-2490, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32527862

RESUMEN

Orosomucoid-like proteins (ORMs) interact with serine palmitoyltransferase (SPT) to negatively regulate sphingolipid biosynthesis, a reversible process critical for balancing the intracellular sphingolipid levels needed for growth and programmed cell death. Here, we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis (Arabidopsis thaliana). Seeds from orm1 -/- orm2 -/- mutants, generated by crossing CRISPR/Cas9 knockout mutants for each gene, accumulated high levels of ceramide, indicative of unregulated sphingolipid biosynthesis. orm1 -/- orm2 -/- seeds were nonviable, displayed aberrant embryo development, and had >80% reduced oil content versus wild-type seeds. This phenotype was mimicked in Arabidopsis seeds expressing the SPT subunit LCB1 lacking its first transmembrane domain, which is critical for ORM-mediated regulation of SPT. We identified a mutant for ORM1 lacking one amino acid (Met-51) near its second transmembrane domain that retained its membrane topology. Expressing this allele in the orm2 background yielded plants that did not advance beyond the seedling stage, hyperaccumulated ceramides, and showed altered organellar structures and increased senescence- and pathogenesis-related gene expression. These seedlings also showed upregulated expression of genes for sphingolipid catabolic enzymes, pointing to additional mechanisms for maintaining sphingolipid homeostasis. ORM1 lacking Met-51 had strongly impaired interactions with LCB1 in a yeast (Saccharomyces cerevisiae) model, providing structural clues about regulatory interactions between ORM and SPT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Edición Génica , Proteínas de la Membrana/metabolismo , Mutación/genética , Aceites de Plantas/metabolismo , Semillas/genética , Esfingolípidos/biosíntesis , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de la Membrana/genética , Modelos Biológicos , Fenotipo , Desarrollo de la Planta , Unión Proteica , Plantones/crecimiento & desarrollo , Fracciones Subcelulares/metabolismo , Regulación hacia Arriba/genética
7.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901815

RESUMEN

The chemical diversity of sphingolipids in plants allows the assignment of specific roles to special molecular species. These roles include NaCl receptors for glycosylinositolphosphoceramides or second messengers for long-chain bases (LCBs), free or in their acylated forms. Such signaling function has been associated with plant immunity, with an apparent connection to mitogen-activated protein kinase 6 (MPK6) and reactive oxygen species (ROS). This work used in planta assays with mutants and fumonisin B1 (FB1) to generate varying levels of endogenous sphingolipids. This was complemented with in planta pathogenicity tests using virulent and avirulent Pseudomonas syringae strains. Our results indicate that the surge of specific free LCBs and ceramides induced by FB1 or an avirulent strain trigger a biphasic ROS production. The first transient phase is partially produced by NADPH oxidase, and the second is sustained and is related to programmed cell death. MPK6 acts downstream of LCB buildup and upstream of late ROS and is required to selectively inhibit the growth of the avirulent but not the virulent strain. Altogether, these results provide evidence that a LCB- MPK6- ROS signaling pathway contributes differentially to the two forms of immunity described in plants, upregulating the defense scheme of a non-compatible interaction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular , Transducción de Señal , Esfingolípidos/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Plant Physiol ; 186(1): 624-639, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33570616

RESUMEN

Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.


Asunto(s)
Arabidopsis/fisiología , Lipidómica , Hojas de la Planta/metabolismo , Esfingolípidos/metabolismo
9.
J Exp Bot ; 73(9): 2889-2904, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560192

RESUMEN

The polyacetylenic lipids falcarinol, falcarindiol, and associated derivatives, termed falcarins, have a widespread taxonomical distribution in the plant kingdom and have received increasing interest for their demonstrated health-promoting properties as anti-cancer and anti-inflammatory agents. These fatty acid-derived compounds are also linked to plant pathogen resistance through their potent antimicrobial properties. Falcarin-type polyacetylenes, which contain two conjugated triple bonds, are derived from structural modifications of the common fatty acid oleic acid. In the past half century, much progress has been made in understanding the structural diversity of falcarins in the plant kingdom, whereas limited progress has been made on elucidating falcarin function in plant-pathogen interactions. More recently, an understanding of the biosynthetic machinery underlying falcarin biosynthesis has emerged. This review provides a concise summary of the current state of knowledge on falcarin structural diversity, biosynthesis, and plant defense properties. We also present major unanswered questions about falcarin biosynthesis and function.


Asunto(s)
Ácidos Grasos , Plantas , Polímero Poliacetilénico
10.
PLoS Comput Biol ; 17(1): e1008284, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507896

RESUMEN

Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network's response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas/genética , Orosomucoide , Esfingolípidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidas/genética , Ceramidas/metabolismo , Biología Computacional , Redes y Vías Metabólicas/genética , Modelos Biológicos , Orosomucoide/genética , Orosomucoide/metabolismo , Plantones/genética , Plantones/metabolismo , Esfingolípidos/genética , Esfingolípidos/metabolismo
11.
BMC Bioinformatics ; 22(1): 513, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674629

RESUMEN

BACKGROUND: Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes. RESULTS: In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble. CONCLUSIONS: Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from: http://bioinfolab.unl.edu/emlab/consemble/ .


Asunto(s)
Genoma , Transcriptoma , Consenso
12.
Plant Biotechnol J ; 19(6): 1268-1282, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33492748

RESUMEN

Upland cotton (Gossypium hirsutum L.) is an economically important multi-purpose crop cultivated globally for fibre, seed oil and protein. Cottonseed oil also is naturally rich in vitamin E components (collectively known as tocochromanols), with α- and γ-tocopherols comprising nearly all of the vitamin E components. By contrast, cottonseeds have little or no tocotrienols, tocochromanols with a wide range of health benefits. Here, we generated transgenic cotton lines expressing the barley (Hordeum vulgare) homogentisate geranylgeranyl transferase coding sequence under the control of the Brassica napus seed-specific promoter, napin. Transgenic cottonseeds had ~twofold to threefold increases in the accumulation of total vitamin E (tocopherols + tocotrienols), with more than 60% γ-tocotrienol. Matrix assisted laser desorption ionization-mass spectrometry imaging showed that γ-tocotrienol was localized throughout the transgenic embryos. In contrast, the native tocopherols were distributed unequally in both transgenic and non-transgenic embryos. α- Tocopherol was restricted mostly to cotyledon tissues and γ-tocopherol was more enriched in the embryonic axis tissues. Production of tocotrienols in cotton embryos had no negative impact on plant performance or yield of other important seed constituents including fibre, oil and protein. Advanced generations of two transgenic events were field grown, and extracts of transgenic seeds showed increased antioxidant activity relative to extracts from non-transgenic seeds. Furthermore, refined cottonseed oil from the two transgenic events showed 30% improvement in oxidative stability relative to the non-transgenic cottonseed oil. Taken together, these materials may provide new opportunities for cottonseed co-products with enhanced vitamin E profile for improved shelf life and nutrition.


Asunto(s)
Gossypium , Tocotrienoles , Suplementos Dietéticos , Gossypium/genética , Estrés Oxidativo , Semillas , Tocoferoles
13.
Plant Physiol ; 182(4): 2111-2125, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32051180

RESUMEN

Aminophospholipid ATPases (ALAs) are lipid flippases involved in transporting specific lipids across membrane bilayers. Arabidopsis (Arabidopsis thaliana) contains 12 ALAs in five phylogenetic clusters, including four in cluster 3 (ALA4-ALA7). ALA4/5 and ALA6/7, are expressed primarily in vegetative tissues and pollen, respectively. Previously, a double knockout of ALA6/7 was shown to result in pollen fertility defects. Here we show that a double knockout of ALA4/5 results in dwarfism, characterized by reduced growth in rosettes (6.5-fold), roots (4.3-fold), bolts (4.5-fold), and hypocotyls (2-fold). Reduced cell size was observed for multiple vegetative cell types, suggesting a role for ALA4/5 in cellular expansion. Members of the third ALA cluster are at least partially interchangeable, as transgenes expressing ALA6 in vegetative tissues partially rescued ala4/5 mutant phenotypes, and expression of ALA4 transgenes in pollen fully rescued ala6/7 mutant fertility defects. ALA4-GFP displayed plasma membrane and endomembrane localization patterns when imaged in both guard cells and pollen. Lipid profiling revealed ala4/5 rosettes had perturbations in glycerolipid and sphingolipid content. Assays in yeast revealed that ALA5 can flip a variety of glycerolipids and the sphingolipid sphingomyelin across membranes. These results support a model whereby the flippase activity of ALA4 and ALA5 impacts the homeostasis of both glycerolipids and sphingolipids and is important for cellular expansion during vegetative growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hipocótilo/genética , Hipocótilo/metabolismo , Esfingolípidos/metabolismo
14.
Mol Breed ; 41(1): 3, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37309527

RESUMEN

The uses of vegetable oils are determined by functional properties arising from their chemical composition. Soybean oil was previously used in margarines and baked foods after partial hydrogenation to achieve heat and oxidative stability. This process, however, generates trans fats that are now excluded from food use because of cardiovascular health risks. Also present in soybean oil are the anti-oxidant tocopherols, with α-tocopherol (vitamin E) typically present as a minor component compared to γ-tocopherol. Genetic improvement of the fatty acid profile and tocopherol profile is an attractive solution to increase the functional and health qualities of soybean oil. The objective of this research was to develop resources to directly select with molecular markers for the elevated vitamin E trait in soybean oil and to use a molecular breeding approach to combine elevated vitamin E with the high oleic/low linolenic acid seed oil trait that improves oil functionality and nutrition. New soybean germplasm was developed from the molecular breeding strategy that selected for alleles of six targeted genes. Seed oil from the novel soybean germplasm was confirmed to contain increased vitamin E α-tocopherol along with a high oleic acid/low linolenic acid profile.

15.
J Chem Ecol ; 47(12): 950-967, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34762210

RESUMEN

Synthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions. We used Camelina as a plant factory to produce mono- and di-unsaturated C12 chain length moth sex pheromone precursors, (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid, by introducing a fatty acyl-ACP thioesterase FatB gene UcTE from California bay laurel (Umbellularia californica) and a bifunctional ∆9 desaturase gene Cpo_CPRQ from the codling moth, Cydia pomonella. Different transgene combinations were investigated for increasing pheromone precursor yield. The most productive Camelina line was engineered with a vector that contained one copy of UcTE and the viral suppressor protein encoding P19 transgenes and three copies of Cpo_CPRQ transgene. The T2 generation of this line produced 9.4% of (E)-9-dodecenoic acid and 5.5% of (E,E)-8,10-dodecadienoic acid of the total fatty acids, and seeds were selected to advance top-performing lines to homozygosity. In the T4 generation, production levels of (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid remained stable. The diene acid together with other seed fatty acids were converted into corresponding alcohols, and the bioactivity of the plant-derived codlemone was confirmed by GC-EAD and a flight tunnel assay. Trapping in orchards and home gardens confirmed significant and specific attraction of C. pomonella males to the plant-derived codlemone.


Asunto(s)
Brassicaceae/química , Dodecanol/análogos & derivados , Ingeniería Metabólica , Mariposas Nocturnas/efectos de los fármacos , Atractivos Sexuales/farmacología , Animales , Dodecanol/química , Dodecanol/metabolismo , Atractivos Sexuales/química
16.
Proc Natl Acad Sci U S A ; 115(7): 1652-1657, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382746

RESUMEN

Understanding the unique features of triacylglycerol (TAG) metabolism in microalgae may be necessary to realize the full potential of these organisms for biofuel and biomaterial production. In the unicellular green alga Chlamydomonas reinhardtii a chloroplastic (prokaryotic) pathway has been proposed to play a major role in TAG precursor biosynthesis. However, as reported here, C. reinhardtii contains a chlorophyte-specific lysophosphatidic acid acyltransferase, CrLPAAT2, that localizes to endoplasmic reticulum (ER) membranes. Unlike canonical, ER-located LPAATs, CrLPAAT2 prefers palmitoyl-CoA over oleoyl-CoA as the acyl donor substrate. RNA-mediated suppression of CrLPAAT2 indicated that the enzyme is required for TAG accumulation under nitrogen deprivation. Our findings suggest that Chlamydomonas has a distinct glycerolipid assembly pathway that relies on CrLPAAT2 to generate prokaryotic-like TAG precursors in the ER.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Retículo Endoplásmico/metabolismo , Triglicéridos/metabolismo , Chlamydomonas reinhardtii/crecimiento & desarrollo , Filogenia , Especificidad por Sustrato
17.
Biochemistry ; 59(11): 1163-1172, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32135062

RESUMEN

Arbuscular mycorrhiza (AM) fungi deliver mineral nutrients to the plant host in exchange for reduced carbon in the form of sugars and lipids. Colonization with AM fungi upregulates a specific host lipid synthesis pathway resulting in the production of fatty acids. Predominantly palmitic acid (16:0) and the unusual palmitvaccenic acid (16:1Δ11cis) accumulate in the fungus Rhizophagus irregularis. Here, we present the isolation and characterization of RiOLE1-LIKE, the desaturase involved in palmitvaccenic acid synthesis, by heterologous expression in yeast and plants. Results are in line with the scenario in which RiOLE1-LIKE encodes an acyl-CoA desaturase with substrate specificity for C15-C18 acyl groups, in particular C16. Phylogenetic analysis of RiOLE1-LIKE-related sequences revealed that this gene is conserved in AM fungi from the Glomales and Diversisporales but is absent from nonsymbiotic Mortierellaceae and Mucoromycotina fungi, suggesting that 16:1Δ11cis provides a specific function during AM colonization.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Proteínas Fúngicas/metabolismo , Glomeromycota/enzimología , Micorrizas/enzimología , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/clasificación , Hongos/enzimología , Hongos/genética , Glomeromycota/química , Glomeromycota/genética , Glomeromycota/metabolismo , Micorrizas/química , Micorrizas/genética , Micorrizas/metabolismo , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Filogenia
18.
Metab Eng ; 57: 63-73, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31654815

RESUMEN

Soybean seeds produce oil enriched in oxidatively unstable polyunsaturated fatty acids (PUFAs) and are also a potential biotechnological platform for synthesis of oils with nutritional omega-3 PUFAs. In this study, we engineered soybeans for seed-specific expression of a barley homogentisate geranylgeranyl transferase (HGGT) transgene alone and with a soybean γ-tocopherol methyltransferase (γ-TMT) transgene. Seeds for HGGT-expressing lines had 8- to 10-fold increases in total vitamin E tocochromanols, principally as tocotrienols, with little effect on seed oil or protein concentrations. Tocochromanols were primarily in δ- and γ-forms, which were shifted largely to α- and ß-tocochromanols with γ-TMT co-expression. We tested whether oxidative stability of conventional or PUFA-enhanced soybean oil could be improved by metabolic engineering for increased vitamin E antioxidants. Selected lines were crossed with a stearidonic acid (SDA, 18:4Δ6,9,12,15)-producing line, resulting in progeny with oil enriched in SDA and α- or γ-linoleic acid (ALA, 18:3Δ9,12,15 or GLA, 18:3Δ6,9,12), from transgene segregation. Oil extracted from HGGT-expressing lines had ≥6-fold increase in free radical scavenging activity compared to controls. However, the oxidative stability index of oil from vitamin E-enhanced lines was ~15% lower than that of oil from non-engineered seeds and nearly the same or modestly increased in oil from the GLA, ALA and SDA backgrounds relative to controls. These findings show that soybean is an effective platform for producing high levels of free-radical scavenging vitamin E antioxidants, but this trait may have negative effects on oxidative stability of conventional oil or only modest improvement of the oxidative stability of PUFA-enhanced oil.


Asunto(s)
Ácidos Grasos Insaturados , Regulación de la Expresión Génica de las Plantas , Glycine max , Ingeniería Metabólica , Semillas , Vitamina E , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/genética , Semillas/genética , Semillas/metabolismo , Aceite de Soja/biosíntesis , Aceite de Soja/genética , Glycine max/genética , Glycine max/metabolismo , Vitamina E/biosíntesis , Vitamina E/genética
19.
Plant Physiol ; 181(2): 714-728, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31420445

RESUMEN

Polyacetylenes (PAs) are bioactive, specialized plant defense compounds produced by some species in the eudicot clade campanulids. Early steps of PA biosynthesis are catalyzed by Fatty Acid Desaturase 2 (FAD2). Canonical FAD2s catalyze desaturation, but divergent forms can catalyze hydroxylation, conjugation, acetylenation, and epoxygenation. These alternate reactions give rise to valuable unusual fatty acids, including the precursors to PAs. The extreme functional diversity of FAD2 enzymes and the origin of PA biosynthesis are poorly understood from an evolutionary perspective. We focus here on the evolution of the FAD2 gene family. We uncovered a core eudicot-wide gene duplication event giving rise to two lineages: FAD2-α and FAD2-ß. Independent neofunctionalizations in both lineages have resulted in functionally diverse FAD2-LIKEs involved in unusual fatty acid biosynthesis. We found significantly accelerated rates of molecular evolution in FAD2-LIKEs and use this metric to provide a list of uncharacterized candidates for further exploration of FAD2 functional diversity. FAD2-α has expanded extensively in Asterales and Apiales, two main clades of campanulids, by ancient gene duplications. Here, we detected positive selection in both Asterales and Apiales lineages, which may have enabled the evolution of PA metabolism in campanulids. Together, these findings also imply that yet uncharacterized FAD2-α copies are involved in later steps of PA biosynthesis. This work establishes a robust phylogenetic framework in which to interpret functional data and to direct future research into the origin and evolution of PA metabolism.


Asunto(s)
Campanulaceae/genética , Evolución Molecular , Ácido Graso Desaturasas/genética , Duplicación de Gen , Ácido Linoleico/biosíntesis , Ácidos Oléicos/biosíntesis , Alquinos , Campanulaceae/metabolismo , Familia de Multigenes , Filogenia , Polímero Poliacetilénico/metabolismo , Selección Genética
20.
Plant Biotechnol J ; 17(7): 1369-1379, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30575262

RESUMEN

Soybean (Glycine max [L.] Merr.) is a commodity crop highly valued for its protein and oil content. The high percentage of polyunsaturated fatty acids in soybean oil results in low oxidative stability, which is a key parameter for usage in baking, high temperature frying applications, and affects shelf life of packaged products containing soybean oil. Introduction of a seed-specific expression cassette carrying the Arabidopsis transcription factor WRINKLED1 (AtWRI1) into soybean, led to seed oil with levels of palmitate up to approximately 20%. Stacking of the AtWRI1 transgenic allele with a transgenic locus harbouring the mangosteen steroyl-ACP thioesterase (GmFatA) resulted in oil with total saturates up to 30%. The creation of a triple stack in soybean, wherein the AtWRI1 and GmFatA alleles were combined with a FAD2-1 silencing allele led to the synthesis of an oil with 28% saturates and approximately 60% oleate. Constructs were then assembled that carry a dual FAD2-1 silencing element/GmFatA expression cassette, alone or combined with an AtWRI1 cassette. These plasmids are designated pPTN1289 and pPTN1301, respectively. Transgenic events carrying the T-DNA of pPTN1289 displayed an oil with stearate levels between 18% and 25%, and oleate in the upper 60%, with reduced palmitate (<5%). While soybean events harboring transgenic alleles of pPTN1301 had similar levels of stearic and oleate levels as that of the pPTRN1289 events, but with levels of palmitate closer to wild type. The modified fatty acid composition results in an oil with higher oxidative stability, and functionality attributes for end use in baking applications.


Asunto(s)
Proteínas de Arabidopsis/genética , Glycine max/metabolismo , Palmitatos/análisis , Plantas Modificadas Genéticamente/metabolismo , Semillas/química , Factores de Transcripción/genética , Aceites de Plantas/química , Glycine max/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA