Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(33): e2220472120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549269

RESUMEN

Dysregulation of histone lysine methyltransferases and demethylases is one of the major mechanisms driving the epigenetic reprogramming of transcriptional networks in castration-resistant prostate cancer (CRPC). In addition to their canonical histone targets, some of these factors can modify critical transcription factors, further impacting oncogenic transcription programs. Our recent report demonstrated that LSD1 can demethylate the lysine 270 of FOXA1 in prostate cancer (PCa) cells, leading to the stabilization of FOXA1 chromatin binding. This process enhances the activities of the androgen receptor and other transcription factors that rely on FOXA1 as a pioneer factor. However, the identity of the methyltransferase responsible for FOXA1 methylation and negative regulation of the FOXA1-LSD1 oncogenic axis remains unknown. SETD7 was initially identified as a transcriptional activator through its methylation of histone 3 lysine 4, but its function as a methyltransferase on nonhistone substrates remains poorly understood, particularly in the context of PCa progression. In this study, we reveal that SETD7 primarily acts as a transcriptional repressor in CRPC cells by functioning as the major methyltransferase targeting FOXA1-K270. This methylation disrupts FOXA1-mediated transcription. Consistent with its molecular function, we found that SETD7 confers tumor suppressor activity in PCa cells. Moreover, loss of SETD7 expression is significantly associated with PCa progression and tumor aggressiveness. Overall, our study provides mechanistic insights into the tumor-suppressive and transcriptional repression activities of SETD7 in mediating PCa progression and therapy resistance.


Asunto(s)
Histonas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Histonas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Lisina/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Metiltransferasas/metabolismo , Histona Demetilasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35031563

RESUMEN

Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.


Asunto(s)
Daño del ADN/genética , Daño del ADN/fisiología , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Activación Transcripcional , Sistemas CRISPR-Cas , Línea Celular Tumoral , Reparación del ADN/genética , Reparación del ADN/fisiología , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
3.
Mol Ther ; 30(4): 1628-1644, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121110

RESUMEN

The androgen receptor (AR) plays a pivotal role in driving prostate cancer (PCa) development. However, when stimulated by high levels of androgens, AR can also function as a tumor suppressor in PCa cells. While the high-dose testosterone (high-T) treatment is currently being tested in clinical trials of castration-resistant prostate cancer (CRPC), there is still a pressing need to fully understand the underlying mechanism and thus develop treatment strategies to exploit this tumor-suppressive activity of AR. In this study, we demonstrate that retinoblastoma (Rb) family proteins play a central role in maintaining the global chromatin binding and transcriptional repression program of AR and that Rb inactivation desensitizes CRPC to the high-dose testosterone treatment in vitro and in vivo. Using a series of patient-derived xenograft (PDX) CRPC models, we further show that the efficacy of high-T treatment can be fully exploited by a CDK4/6 inhibitor, which strengthens the chromatin binding of the Rb-E2F repressor complex by blocking the hyperphosphorylation of Rb proteins. Overall, our study provides strong mechanistic and preclinical evidence on further developing clinical trials to combine high-T with CDK4/6 inhibitors in treating CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Línea Celular Tumoral , Cromatina , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/uso terapéutico , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/uso terapéutico , Genes Supresores de Tumor , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Proteína de Retinoblastoma/genética , Testosterona/uso terapéutico
4.
Nucleic Acids Res ; 45(7): 3738-3751, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28062857

RESUMEN

P-TEFb (CDK9/cyclin T) plays a central role in androgen receptor (AR)-mediated transactivation by phosphorylating both RNA polymerase 2 complex proteins and AR at S81. CDK9 dephosphorylation mobilizes P-TEFb from an inhibitory 7SK ribonucleoprotein complex, but mechanisms targeting phosphatases to P-TEFb are unclear. We show that AR recruits protein phosphatase 1α (PP1α), resulting in P-TEFb mobilization and CDK9-mediated AR S81 phosphorylation. This increased pS81 enhances p300 recruitment, histone acetylation, BRD4 binding and subsequent further recruitment of P-TEFb, generating a positive feedback loop that sustains transcription. AR S81 is also phosphorylated by CDK1, and blocking basal CDK1-mediated S81 phosphorylation markedly suppresses AR activity and initiation of this positive feedback loop. Finally, androgen-independent AR activity in castration-resistant prostate cancer (CRPC) cells is driven by increased CDK1-mediated S81 phosphorylation. Collectively these findings reveal a mechanism involving PP1α, CDK9 and CDK1 that is used by AR to initiate and sustain P-TEFb activity, which may be exploited to drive AR in CRPC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Factor B de Elongación Transcripcional Positiva/metabolismo , Neoplasias de la Próstata/genética , Proteína Fosfatasa 1/metabolismo , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Retroalimentación Fisiológica , Humanos , Masculino , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Activación Transcripcional
5.
Nat Commun ; 15(1): 4914, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851846

RESUMEN

FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.


Asunto(s)
Linaje de la Célula , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito , Neoplasias de la Próstata , Factor de Transcripción AP-1 , Masculino , Humanos , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Animales , Cromatina/metabolismo , Cromatina/genética , Plasticidad de la Célula/genética , Reprogramación Celular/genética , Ratones , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Elementos de Facilitación Genéticos/genética , Transcripción Genética
6.
J Clin Invest ; 134(11)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687617

RESUMEN

One critical mechanism through which prostate cancer (PCa) adapts to treatments targeting androgen receptor (AR) signaling is the emergence of ligand-binding domain-truncated and constitutively active AR splice variants, particularly AR-V7. While AR-V7 has been intensively studied, its ability to activate distinct biological functions compared with the full-length AR (AR-FL), and its role in regulating the metastatic progression of castration-resistant PCa (CRPC), remain unclear. Our study found that, under castrated conditions, AR-V7 strongly induced osteoblastic bone lesions, a response not observed with AR-FL overexpression. Through combined ChIP-seq, ATAC-seq, and RNA-seq analyses, we demonstrated that AR-V7 uniquely accesses the androgen-responsive elements in compact chromatin regions, activating a distinct transcription program. This program was highly enriched for genes involved in epithelial-mesenchymal transition and metastasis. Notably, we discovered that SOX9, a critical metastasis driver gene, was a direct target and downstream effector of AR-V7. Its protein expression was dramatically upregulated in AR-V7-induced bone lesions. Moreover, we found that Ser81 phosphorylation enhanced AR-V7's pro-metastasis function by selectively altering its specific transcription program. Blocking this phosphorylation with CDK9 inhibitors impaired the AR-V7-mediated metastasis program. Overall, our study has provided molecular insights into the role of AR splice variants in driving the metastatic progression of CRPC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Animales , Humanos , Masculino , Ratones , Empalme Alternativo , Neoplasias Óseas/secundario , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transcripción Genética
7.
J Biol Chem ; 287(11): 8571-83, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22275373

RESUMEN

Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.


Asunto(s)
Cromatina/metabolismo , Receptores Androgénicos/metabolismo , Transcripción Genética/fisiología , Sustitución de Aminoácidos , Andrógenos/farmacología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/fisiología , Línea Celular Tumoral , Cromatina/genética , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Fase G1/efectos de los fármacos , Fase G1/fisiología , Humanos , Mutación Missense , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Receptores Androgénicos/genética , Fase S/efectos de los fármacos , Fase S/fisiología , Serina/genética , Serina/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Transcripción Genética/efectos de los fármacos
8.
J Biol Chem ; 287(3): 2090-8, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22139837

RESUMEN

Androgen receptor (AR) plays a central role in prostate cancer (PCa) growth, with androgen deprivation or AR down-regulation causing cell-cycle arrest and accumulation of the p27 cyclin-dependent kinase inhibitor. The molecular basis for this AR regulation of cell-cycle progression remains unclear. Here we demonstrate that androgen can rapidly reduce p27 protein in PCa cells by increasing its proteasome-mediated degradation. This rapid androgen-stimulated p27 degradation was mediated by AKT through the phosphorylation of p27 T157. Significantly, androgen increased TORC2-mediated AKT S473 phosphorylation without affecting the PDK1-mediated AKT T308 phosphorylation or TORC1 activity. The TORC2 activation was further supported by enhanced mTOR/RICTOR association and increased phosphorylation of additional TORC2 substrates, SGK1 and PKCα. The androgen-stimulated nuclear translocation of AR was associated with markedly-increased nuclear SIN1, a critical component of TORC2. Finally, the androgen-mediated TORC2/AKT activation targets a subset of AKT substrates including p27 and FOXO1, but not PRAS40. This study reveals a pathway linking AR to a selective activation of TORC2, the subsequent activation of AKT, and phosphorylation of a discrete set of AKT substrates that regulate cellular proliferation and survival. These findings establish that TORC2 can function as a central regulator of growth in response to signals that are distinct from those regulating TORC1, and support efforts to target TORC2 for cancer therapy.


Asunto(s)
Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Neoplasias de la Próstata/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Transactivadores/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Ratones , Fosforilación/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Receptores Androgénicos/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Cancer Res ; 83(10): 1684-1698, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877164

RESUMEN

The lysine demethylase LSD1 (also called KDM1A) plays important roles in promoting multiple malignancies including both hematologic cancers and solid tumors. LSD1 targets histone and nonhistone proteins and can function as a transcriptional corepressor or coactivator. LSD1 has been reported to act as a coactivator of androgen receptor (AR) in prostate cancer and to regulate the AR cistrome via demethylation of its pioneer factor FOXA1. A deeper understanding of the key oncogenic programs targeted by LSD1 could help stratify prostate cancer patients for treatment with LSD1 inhibitors, which are currently under clinical investigation. In this study, we performed transcriptomic profiling in an array of castration-resistant prostate cancer (CRPC) xenograft models that are sensitive to LSD1 inhibitor treatment. Impaired tumor growth by LSD1 inhibition was attributed to significantly decreased MYC signaling, and MYC was found to be a consistent target of LSD1. Moreover, LSD1 formed a network with BRD4 and FOXA1 and was enriched at super-enhancer regions exhibiting liquid-liquid phase separation. Combining LSD1 inhibitors with BET inhibitors exhibited strong synergy in disrupting the activities of multiple drivers in CRPC, thereby inducing significant growth repression of tumors. Importantly, the combination treatment showed superior effects than either inhibitor alone in disrupting a subset of newly identified CRPC-specific super-enhancers. These results provide mechanistic and therapeutic insights for cotargeting two key epigenetic factors and could be rapidly translated in the clinic for CRPC patients. SIGNIFICANCE: LSD1 drives prostate cancer progression by activating super-enhancer-mediated oncogenic programs, which can be targeted with the combination of LSD1 and BRD4 inhibitors to suppress the growth of CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular Tumoral , Transducción de Señal , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Histona Demetilasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Ciclo Celular/metabolismo
10.
Cancer Res Commun ; 3(8): 1716-1730, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37663929

RESUMEN

Epigenetic reprogramming, mediated by genomic alterations and dysregulation of histone reader and writer proteins, plays a critical role in driving prostate cancer progression and treatment resistance. However, the specific function and regulation of EHMT1 (also known as GLP) and EHMT2 (also known as G9A), well-known histone 3 lysine 9 methyltransferases, in prostate cancer progression remain poorly understood. Through comprehensive investigations, we discovered that both EHMT1 and EHMT2 proteins have the ability to activate oncogenic transcription programs in prostate cancer cells. Silencing EHMT1/2 or targeting their enzymatic activity with small-molecule inhibitors can markedly decrease prostate cancer cell proliferation and metastasis in vitro and in vivo. In-depth analysis of posttranslational modifications of EHMT1 protein revealed the presence of methylation at lysine 450 and 451 residues in multiple prostate cancer models. Notably, we found that lysine 450 can be demethylated by LSD1. Strikingly, concurrent demethylation of both lysine residues resulted in a rapid and profound expansion of EHMT1's chromatin binding capacity, enabling EHMT1 to reprogram the transcription networks in prostate cancer cells and activate oncogenic signaling pathways. Overall, our studies provide valuable molecular insights into the activity and function of EHMT proteins during prostate cancer progression. Moreover, we propose that the dual-lysine demethylation of EHMT1 acts as a critical molecular switch, triggering the induction of oncogenic transcriptional reprogramming in prostate cancer cells. These findings highlight the potential of targeting EHMT1/2 and their demethylation processes as promising therapeutic strategies for combating prostate cancer progression and overcoming treatment resistance. Significance: In this study, we demonstrate that EHMT1 and EHMT2 proteins drive prostate cancer development by transcriptionally activating multiple oncogenic pathways. Mechanistically, the chromatin binding of EHMT1 is significantly expanded through demethylation of both lysine 450 and 451 residues, which can serve as a critical molecular switch to induce oncogenic transcriptional reprogramming in prostate cancer cells.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Masculino , Humanos , Lisina , Histonas , Procesos Neoplásicos , Neoplasias de la Próstata/genética , N-Metiltransferasa de Histona-Lisina/genética , Cromatina , Desmetilación , Antígenos de Histocompatibilidad
11.
Front Oncol ; 12: 1021845, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408179

RESUMEN

Elevated androgen receptor (AR) expression is a hallmark of castration-resistant prostate cancer (CRPC) and contributes to the restoration of AR signaling under the conditions of androgen deprivation. However, whether overexpressed AR alone with the stimulation of castrate levels of androgens can be sufficient to induce the reprogramming of AR signaling for the adaptation of prostate cancer (PCa) cells remains unclear. In this study, we used a PCa model with inducible overexpression of AR to examine the acute effects of AR overexpression on its cistrome and transcriptome. Our results show that overexpression of AR alone in conjunction with lower androgen levels can rapidly redistribute AR chromatin binding and activates a distinct transcription program that is enriched for DNA damage repair pathways. Moreover, using a recently developed bioinformatic tool, we predicted the involvement of EZH2 in this AR reprogramming and subsequently identified a subset of AR/EZH2 co-targeting genes, which are overexpressed in CRPC and associated with worse patient outcomes. Mechanistically, we found that AR-EZH2 interaction is impaired by the pre-castration level of androgens but can be recovered by the post-castration level of androgens. Overall, our study provides new molecular insights into AR signaling reprogramming with the engagement of specific epigenetic factors.

12.
Oncogene ; 41(6): 852-864, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34975152

RESUMEN

Genomic loss of RB1 is a common alteration in castration-resistant prostate cancer (CRPC) and is associated with poor patient outcomes. RB1 loss is also a critical event that promotes the neuroendocrine transdifferentiation of prostate cancer (PCa) induced by the androgen receptor (AR) signaling inhibition (ARSi). The loss of Rb protein disrupts the Rb-E2F repressor complex and thus hyperactivates E2F transcription activators. While the impact of Rb inactivation on PCa progression and linage plasticity has been previously studied, there is a pressing need to fully understand underlying mechanisms and identify vulnerabilities that can be therapeutically targeted in Rb-deficient CRPC. Using an integrated cistromic and transcriptomic analysis, we have characterized Rb activities in multiple CRPC models by identifying Rb-directly regulated genes and revealed that Rb has distinct binding sites and targets in CRPC with different genomic backgrounds. Significantly, we show that E2F1 chromatin binding and transcription activity in Rb-deficient CRPC are highly dependent on LSD1/KDM1A, and that Rb inactivation sensitizes CRPC tumor to the LSD1 inhibitor treatment. These results provide new molecular insights into Rb activity in PCa progression and suggest that targeting LSD1 activity with small molecule inhibitors may be a potential treatment strategy to treat Rb-deficient CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino
13.
Protein Cell ; 12(1): 29-38, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946061

RESUMEN

Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Secuencia de Aminoácidos , Transición Epitelial-Mesenquimal , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Mutación , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Procesamiento Proteico-Postraduccional , Receptores Androgénicos/metabolismo , Transducción de Señal , Transcripción Genética
14.
Cancer Res ; 81(14): 3766-3776, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33632899

RESUMEN

Although American men of European ancestry represent the largest population of patients with prostate cancer, men of African ancestry are disproportionately affected by prostate cancer, with higher prevalence and worse outcomes. These racial disparities in prostate cancer are due to multiple factors, but variations in genomic susceptibility such as SNP may play an important role in determining cancer aggressiveness and treatment outcome. Using public databases, we have identified a prostate cancer susceptibility SNP at an intronic enhancer of the neural precursor expressed, developmentally downregulated 9 (NEDD9) gene, which is strongly associated with increased risk of patients with African ancestry. This genetic variation increased expression of NEDD9 by modulating the chromatin binding of certain transcription factors, including ERG and NANOG. Moreover, NEDD9 displayed oncogenic activity in prostate cancer cells, promoting prostate cancer tumor growth and metastasis in vitro and in vivo. Together, our study provides novel insights into the genetic mechanisms driving prostate cancer racial disparities. SIGNIFICANCE: A prostate cancer susceptibility genetic variation in NEDD9, which is strongly associated with the increased risk of patients with African ancestry, increases NEDD9 expression and promotes initiation and progression of prostate cancer.See related commentary by Mavura and Huang, p. 3764.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Próstata/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata/metabolismo , Transfección , Pez Cebra
15.
Cancer Res ; 80(14): 2977-2978, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669350

RESUMEN

Cancer cells with germline deleterious mutations of BRCA1 or BRCA2 are deficient in homologous recombination repair and therefore sensitive to PARP inhibitor treatment. However, wild-type BRCA1/2-expressing cells with defects in other DNA damage repair pathway components may also exhibit "BRCAness," which in combination with PARP inhibition can similarly induce synthetic lethality. In this issue of Cancer Research, Luo and colleagues report a novel mechanism by which BRCA1 protein degradation in response to DNA double-strand breaks is regulated by prolyl isomerase Pin1. Inactivation of Pin1 can establish BRCAness in cancer cells and thus sensitize cells to PARP inhibitor treatment.See related articles by Luo et al., p. 3033.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias de la Mama/tratamiento farmacológico , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
16.
Nat Genet ; 52(10): 1011-1017, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32868907

RESUMEN

FOXA1 functions as a pioneer transcription factor by facilitating the access to chromatin for steroid hormone receptors, such as androgen receptor and estrogen receptor1-4, but mechanisms regulating its binding to chromatin remain elusive. LSD1 (KDM1A) acts as a transcriptional repressor by demethylating mono/dimethylated histone H3 lysine 4 (H3K4me1/2)5,6, but also acts as a steroid hormone receptor coactivator through mechanisms that are unclear. Here we show, in prostate cancer cells, that LSD1 associates with FOXA1 and active enhancer markers, and that LSD1 inhibition globally disrupts FOXA1 chromatin binding. Mechanistically, we demonstrate that LSD1 positively regulates FOXA1 binding by demethylating lysine 270, adjacent to the wing2 region of the FOXA1 DNA-binding domain. Acting through FOXA1, LSD1 inhibition broadly disrupted androgen-receptor binding and its transcriptional output, and dramatically decreased prostate cancer growth alone and in synergy with androgen-receptor antagonist treatment in vivo. These mechanistic insights suggest new therapeutic strategies in steroid-driven cancers.


Asunto(s)
Factor Nuclear 3-alfa del Hepatocito/genética , Histona Demetilasas/genética , Neoplasias de la Próstata/genética , Unión Proteica/genética , Antagonistas de Receptores Androgénicos/farmacología , Animales , Línea Celular Tumoral , Cromatina/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Hormonas Esteroides Gonadales/genética , Xenoinjertos , Humanos , Masculino , Ratones , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética
17.
Front Oncol ; 9: 721, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428587

RESUMEN

Lysine specific demethylase 1 (LSD1) functions as a transcriptional repressor through demethylating active histone marks such as mono- or di-methylated histone 3 lysine 4 (H3K4) and interacting with histone deacetylases. However, LSD1 can also act as an activator through demethylating repressive histone marks and possibly non-histone proteins. In prostate cancer (PCa) cells, LSD1 mediates the transcriptional activity of androgen receptor (AR), a ligand dependent nuclear transcription factor that drives PCa initiation and progression to the castration-resistant prostate cancer (CRPC). However, it is unclear whether LSD1 also regulates other growth promoting pathways independent of AR signaling in PCa cells. In this study, we show that LSD1 can activate PI3K/AKT pathways in absence of androgen stimulation, and we further demonstrate that LSD1 transcriptionally regulates the expression of PI3K regulatory subunit, p85, possibly through epigenetic reprogramming of enhancer landscape in PCa cells. Our study suggests that LSD1 has dual functions in promoting PCa development, that it enhances AR signaling through its coactivator function, and that it activates PI3K/AKT signaling through increasing p85 gene expression.

18.
Oncogene ; 38(22): 4397-4411, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30718921

RESUMEN

The aberrant activation of the ERG oncogenic pathway due to the TMPRSS2-ERG gene fusion is the major event that contributes to prostate cancer (PCa) development. However, the critical downstream effectors that can be therapeutically targeted remain to be identified. In this study, we have found that the expression of the α1 and ß1 subunits of soluble guanylyl cyclase (sGC) was directly and specifically regulated by ERG in vitro and in vivo and was significantly associated with TMPRSS2-ERG fusion in clinical PCa cohorts. sGC is the major mediator of nitric oxide (NO)-cGMP signaling in cells that, upon NO binding, catalyzes the synthesis of cGMP and subsequently activates protein kinase G (PKG). We showed that cGMP synthesis was significantly elevated by ERG in PCa cells, leading to increased PKG activity and cell proliferation. Importantly, we also demonstrated that sGC inhibitor treatment repressed tumor growth in TMPRSS2-ERG-positive PCa xenograft models and can act in synergy with a potent AR antagonist, enzalutamide. This study strongly suggests that targeting NO-cGMP signaling pathways may be a novel therapeutic strategy to treat PCa with TMPRSS2-ERG gene fusion.


Asunto(s)
GMP Cíclico/genética , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Serina Endopeptidasas/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones SCID , Óxido Nítrico/genética , Próstata/patología , Neoplasias de la Próstata/patología , Transducción de Señal/genética , Guanilil Ciclasa Soluble/genética , Regulador Transcripcional ERG/genética
19.
Cancer Res ; 79(20): 5260-5271, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31444154

RESUMEN

Loss of expression of context-specific tumor suppressors is a critical event that facilitates the development of prostate cancer. Zinc finger and BTB domain containing transcriptional repressors, such as ZBTB7A and ZBTB16, have been recently identified as tumor suppressors that play important roles in preventing prostate cancer progression. In this study, we used combined ChIP-seq and RNA-seq analyses of prostate cancer cells to identify direct ZBTB7A-repressed genes, which are enriched for transcriptional targets of E2F, and identified that the androgen receptor (AR) played a critical role in the transcriptional suppression of these E2F targets. AR recruitment of the retinoblastoma protein (Rb) was required to strengthen the E2F-Rb transcriptional repression complex. In addition, ZBTB7A was rapidly recruited to the E2F-Rb binding sites by AR and negatively regulated the transcriptional activity of E2F1 on DNA replication genes. Finally, ZBTB7A suppressed the growth of castration-resistant prostate cancer (CRPC) in vitro and in vivo, and overexpression of ZBTB7A acted in synergy with high-dose testosterone treatment to effectively prevent the recurrence of CRPC. Overall, this study provides novel molecular insights of the role of ZBTB7A in CRPC cells and demonstrates globally its critical role in mediating the transcriptional repression activity of AR. SIGNIFICANCE: ZBTB7A is recruited to the E2F-Rb binding sites by AR and negatively regulates the transcriptional activity of E2F1 on DNA replication genes.


Asunto(s)
Adenocarcinoma/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias de la Próstata/genética , Receptores Androgénicos/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Sitios de Unión , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Factor de Transcripción E2F1/fisiología , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transporte de Proteínas , Interferencia de ARN , Recurrencia , Proteína de Retinoblastoma/fisiología , Testosterona/farmacología
20.
Mol Cancer Res ; 5(7): 725-35, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17634427

RESUMEN

The multiple transcriptional roles of c-Jun are shown in a novel cross-talk between the androgen receptor (AR) and its new target gene, Ets variant gene 1 (ETV1). In this report, we show that c-Jun can mediate AR induction of ETV1 expression independent of c-Jun transactivation function. Interestingly, c-Jun can transactivate the cloned ETV1 promoter also in the absence of ligand-activated AR, suggesting two mechanisms by which c-Jun can induce ETV1 expression. In addition, both wild-type c-Jun and a transactivation-deficient mutant can enhance the transcriptional activity of ETV1, as measured by both reporter gene assay and endogenous expression of matrix metalloproteinase genes, well-known targets of Ets proteins. Overexpression of the c-Jun mutant protein also led to increased prostate cancer cell invasion. Immunoprecipitation and immunocytochemistry experiments showed copurification and colocalization of c-Jun with AR or ETV1, suggesting that c-Jun acts on AR or ETV1 via a physical association. Collectively, these results, together with a parallel overexpression of ETV1, c-Jun, and AR in prostate tumors, imply that c-Jun plays a pivotal role in the pathway that connects ligand-activated AR to elevated ETV1 expression, leading to enhanced expression of matrix metalloproteinases and prostate cancer cell invasion.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores Androgénicos/metabolismo , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metaloproteinasas de la Matriz/genética , Análisis por Micromatrices , Invasividad Neoplásica , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Unión Proteica , Transporte de Proteínas , Activación Transcripcional/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA