Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Divers ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954072

RESUMEN

Proviral Integrations of Moloney-2 (PIM-2) kinase is a promising target for various cancers and other diseases, and its inhibitors hold potential for treating related diseases. However, there is currently no clinically available PIM-2 inhibitor. In this study, we constructed a generative model for de novo PIM-2 inhibitor design based on artificial intelligence, performed molecular docking and molecular dynamics (MD) simulations to develop an efficient PIM-2 inhibitor generative model and discover potential PIM-2 inhibitors. First, we designed a generative model based on a Bi-directional Long Short-Term Memory (BiLSTM) framework combined with a transfer learning strategy and generated a new PIM-2 small molecule library using existing active drug databases. The generated compound library was then virtually screened by molecular docking and scaffold similarity comparison, identifying 10 initial hit compounds with better performance. Next, using the inhibitor in the crystal structure as a positive control, we performed two rounds of MD simulations, with lengths of 100 ns and 500 ns, respectively, to study the dynamic stability of the protein-ligand systems of the 10 compounds with PIM-2. Analyzed the interactions with key hinge region residues, binding free energies, and changes in the ATP pocket size. The generative model demonstrates good molecular generation capability and can generate efficient novel molecules with similar physicochemical properties as active PIM-2 drugs. Among the 10 initially selected hit compounds, 5 compounds C3 (- 29.69 kcal/mol), C4 (- 33.31 kcal/mol), C5 (- 28.59 kcal/mol), C8 (- 34.68 kcal/mol), and C9 (- 25.88 kcal/mol) have higher binding energies with PIM-2 than the positive drug 3YR (- 26.18 kcal/mol). The MD simulation results are consistent with the docking analysis, these compounds have lower and more stable RMSD values for the complex systems with the reported positive drug 3YR and PIM-2 complex system. They can form long-term stable interactions with active site and the hinge region of PIM-2, which suggests these compounds are likely to have potent inhibitory effects on PIM-2. This study provides an efficient generative model for PIM-2 inhibitor research and discovers 5 potential novel PIM-2 inhibitors.

2.
J Org Chem ; 88(9): 5731-5744, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996408

RESUMEN

A copper-catalyzed C3 amination of 2H-indazoles with 2H-indazoles and indazol-3(2H)-ones under mild conditions was developed. A series of indazole-containing indazol-3(2H)-one derivatives were produced in moderate to excellent yields. The mechanistic studies suggest that the reactions probably proceed through a radical pathway.

3.
Acta Pharmacol Sin ; 44(3): 610-621, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36008706

RESUMEN

Mitochondrial dynamics, including mitochondrial fission and fusion, are critical for maintaining mitochondrial functions. Evidence shows that TANK-binding kinase 1 (TBK1) regulates mitochondrial fusion and fission and then mitophagy. Since a previous study demonstrates a strong correlation between mitophagy and osteoarthritis (OA), we herein investigated the potential role of TBK1 in OA process and mitochondrial functions. We demonstrated a strong correlation between TBK1 and OA, evidenced by significantly downregulated expression of TBK1 in cartilage tissue samples of OA patients and in the chondrocytes of aged mice, as well as TNF-α-stimulated phosphorylation of TBK1 in primary mouse chondrocytes. TBK1 overexpression significantly attenuated TNF-α-induced apoptosis and abnormal mitochondrial function in primary mouse chondrocytes. Furthermore, TBK1 overexpression induced remodeling of mitochondrial morphology by directly phosphorylating dynamin-related protein 1 (DRP1) at Ser637, abolishing the fission of DRP1 and preventing its fragmentation function. Moreover, TBK1 recruitment and DRP1 phosphorylation at Ser637 was necessary for engulfing damaged mitochondria by autophagosomal membranes during mitophagy. Moreover, we demonstrated that APMK/ULK1 signaling contributed to TBK1 activation. In OA mouse models established by surgical destabilization of the medial meniscus, intraarticular injection of lentivirus-TBK1 significantly ameliorated cartilage degradation via regulation of autophagy and alleviation of cell apoptosis. In conclusion, our results suggest that the TBK1/DRP1 pathway is involved in OA and pharmacological targeting of the TBK1-DRP1 cascade provides prospective therapeutic benefits for the treatment of OA.


Asunto(s)
Dinámicas Mitocondriales , Factor de Necrosis Tumoral alfa , Ratones , Animales , Fosforilación , Factor de Necrosis Tumoral alfa/metabolismo , Autofagia/fisiología , Dinaminas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Br J Cancer ; 127(6): 1014-1025, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35715638

RESUMEN

BACKGROUND: Fibroblast growth factor receptor (FGFR) signaling influenced tumour occurrence and development. Overexpression of FGFR had been observed in many types of cancers, including colon cancer. FGFR inhibitor is considered to be effective in treating colon cancer patients. METHODS: First, the kinase inhibition rate was determined. MTT, western blotting, colony formation, EdU and comet assays were performed to evaluate the anti-tumour effects of F1-7 in vitro. RNA-seq and bioinformatics analysis were used for further verification. Additionally, a xenograft model was generated to investigate the anti-tumour effect of F1-7. RESULTS: F1-7 can inhibit the proliferation of colon cancer cells in vitro. It could significantly inhibit FGFR phosphorylation and its downstream signaling pathway. Whole-genome RNA-seq analysis found that the changed genes were not only functionally focused on MAPK signaling pathway but also related to cell apoptosis and ferroptosis. Experimental evidence demonstrated that F1-7 can directly increase the level of cellular DNA damage. The occurrence of DNA damage led to cell cycle arrest and inhibition of cell metastasis and cell apoptosis. Mouse model experiments also confirmed that F1-7 could inhibit tumour growth by inhibiting the FGFR pathway. CONCLUSIONS: F1-7 exhibits anti-tumour activity by inhibiting the FGFR pathway. It could be a novel therapeutic agent for targeting colon cancer cells.


Asunto(s)
Neoplasias del Colon , Inhibidores de Proteínas Quinasas , Animales , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Daño del ADN , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/genética
5.
BMC Bioinformatics ; 19(1): 315, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189851

RESUMEN

BACKGROUND: Target identification is necessary for the comprehensive inference of the mechanism of action of a compound. The application of computational methods to predict the targets of bioactive compounds saves cost and time in drug research and development. Therefore, we designed an integrated strategy consisting of ligand-protein docking, network analysis, enrichment analysis, and an experimental surface plasmon resonance (SPR) method to identify and validate new targets, and then used enriched pathways to elucidate the underlying pharmacological mechanisms. Here, we used rhein, a compound with various pharmacological activities, as an example to find some of its previously unknown targets and to determine its pharmacological activity. RESULTS: A total of nine candidate targets were discovered, including LCK, HSP90AA1, RAB5A, EGFR, CDK2, CDK6, GSK3B, p38, and JNK. LCK was confirmed through SPR experiments, and HSP90AA1, EGFR, CDK6, p38, and JNK were validated through previous reports. Rhein network regulations are complex and interconnected. The therapeutic effect of rhein is the synergistic and comprehensive result of this vast and complex network, and the perturbation of multiple targets gives rhein its various pharmacological activities. CONCLUSIONS: This study provided a new integrated strategy to identify new targets of bioactive compounds and reveal their molecular mechanisms of action.


Asunto(s)
Antraquinonas/farmacología , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Farmacología/métodos , Mapas de Interacción de Proteínas , Proteínas/metabolismo , Humanos
6.
Apoptosis ; 22(6): 852-864, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28315172

RESUMEN

Fibroblast growth factor receptor 1 (FGFR1), belonging to receptor tyrosine kinases (RTKs), possesses various biological functions. Over-expression of FGFR1 has been observed in multiple human malignancies. Hence, targeting FGFR1 is an attractive prospect for the advancement of cancer treatment options. Here, we present a novel small molecular FGFR1 inhibitor L16H50, which can inhibit FGFR1 kinase in an ATP-independent manner. It potently inhibits FGFR1-mediated signaling in a gastric cancer cell line, resulting in inhibition of cell growth, survival and migration. It also displays an outstanding anti-tumor activity in a gastric cancer xenograft tumor model by targeting FGFR1 signaling. These results show that L16H50 is a potent non-ATP-competitive FGFR1 inhibitor and may provide strong rationale for its evaluation in gastric cancer patients.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hidrocarburos Clorados/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fase G2/efectos de los fármacos , Células HEK293 , Humanos , Hidrocarburos Clorados/química , Hidrocarburos Clorados/farmacología , Ratones , Mitosis/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Phys Chem Chem Phys ; 19(5): 3649-3659, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28094372

RESUMEN

The activation and overexpression of fibroblast growth factor receptors (FGFRs) are highly correlated with a variety of cancers. Most small molecule inhibitors of FGFRs selectively target FGFR1-3, but not FGFR4. Hence, designing highly selective inhibitors towards FGFR4 remains a great challenge because FGFR4 and FGFR1 have a high sequence identity. Recently, two small molecule inhibitors of FGFRs, ponatinib and AZD4547, have attracted huge attention. Ponatinib, a type II inhibitor, has high affinity towards FGFR1/4 isoforms, but AZD4547, a type I inhibitor of FGFR1, displays much reduced inhibition toward FGFR4. In this study, conventional molecular dynamics (MD) simulations, molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculations and umbrella sampling (US) simulations were carried out to reveal the principle of the binding preference of ponatinib and AZD4547 towards FGFR4/FGFR1. The results provided by MM/GBSA illustrate that ponatinib has similar binding affinities to FGFR4 and FGFR1, while AZD4547 has much stronger binding affinity to FGFR1 than to FGFR4. A comparison of the individual energy terms suggests that the selectivity of AZD4547 towards FGFR1 versus FGFR4 is primarily controlled by the variation of the van der Waals interactions. The US simulations reveal that the PMF profile of FGFR1/AZD4547 has more peaks and valleys compared with that of FGFR4/AZD4547, suggesting that the dissociation process of AZD4547 from FGFR1 are easily trapped into local minima. Moreover, it is observed that FGFR1/AZD4547 has much higher PMF depth than FGFR4/AZD4547, implying that it is more difficult for AZD4547 to escape from FGFR1 than from FGFR4. The physical principles provided by this study extend our understanding of the binding mechanisms and provide valuable guidance for the rational design of FGFR isoform selective inhibitors.


Asunto(s)
Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/química , Benzamidas/química , Benzamidas/metabolismo , Imidazoles/química , Imidazoles/metabolismo , Modelos Químicos , Piperazinas/química , Piperazinas/metabolismo , Unión Proteica , Isoformas de Proteínas , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Pirazoles/metabolismo , Piridazinas/química , Piridazinas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
8.
J Nat Prod ; 79(4): 1124-31, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27010413

RESUMEN

Nineteen metabolites with diverse structures, including the rare pyrroloindoline alkaloid verrupyrroloindoline (1), the unprecedented highly fused benzosesquiterpenoid verrubenzospirolactone (2), the new asteriscane-type sesquiterpenoid 10-deoxocapillosanane D (3), and the two new cyclopentenone derivatives (4S*,5S*)-4-hydroxy-5-(hydroxymethyl)-2,3-dimethyl-4-pentylcyclopent-2-en-1-one (4) and (S)-4-hydroxy-5-methylene-2,3-dimethyl-4-pentylcyclopent-2-en-1-one (5), were isolated from a South China Sea collection of the soft coral Sinularia verruca. Eleven previously described marine metabolites (7-15, 18, and 19) were also obtained as well as three new EtOH-adduct artifacts (6, 16, and 17). The structures of the new compounds were elucidated by extensive spectroscopic analysis and by comparison with previously reported data. Compounds 4, 5, and 16 showed protection against the cytopathic effects of HIV-1 infection with EC50 values of 5.8-34 µM, and 4, 6, and 16 exhibited inhibition against LPS-induced NO production with IC50 values of 24-28 µM.


Asunto(s)
Antozoos/química , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Animales , China , Ciclopentanos/química , Ciclopentanos/aislamiento & purificación , VIH-1/efectos de los fármacos , Alcaloides Indólicos/farmacología , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Ratones , Estructura Molecular , Óxido Nítrico/biosíntesis , Resonancia Magnética Nuclear Biomolecular , Océanos y Mares , Sesquiterpenos/farmacología
9.
Planta Med ; 82(3): 224-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26544116

RESUMEN

Nomilin is a potential anticancer agent. In this study, a rapid, sensitive, and simple ultra-performance liquid chromatography with tandem mass spectrometry methodology was established and validated to quantify nomilin in rat plasma. Plasma samples were prepared through liquid-liquid extraction using ethyl acetate. Chromatographic separation was performed using an Acquity HSS T3 column. Acetonitrile and water containing 0.1% (v/v) formic acid were used as mobile phases at a flow rate of 0.3 mL/min. Nomilin and quercetin (internal standard) were detected and quantified via a triple quadrupole tandem mass spectrometer in the positive ion mode with multiple reaction monitoring. Tandem mass spectrometry detection was performed by monitoring the fragmentations of m/z 515.3 → m/z 161.0 and m/z 303.2 → m/z 153.1 of nomilin and quercetin, respectively. Good linearity (R(2) > 0.996) was observed in the concentration range of 1 ng/mL to 500 ng/mL with a lower limit of quantification of 1 ng/mL for nomilin. The average extraction recoveries of nomilin and quercetin were > 82.3% and 82.0%, respectively. Intra- and interday precisions were less than 15% and accuracy ranged from 85.0% to 90.1%. Indeed, the proposed method was successfully applied to analyze the pharmacokinetics of nomilin after 3 and 50 mg/kg nomilin were administered to rats via intravenous and oral routes, respectively.


Asunto(s)
Benzoxepinas/sangre , Cromatografía Líquida de Alta Presión/métodos , Limoninas/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Benzoxepinas/farmacocinética , Limoninas/farmacocinética , Extracción Líquido-Líquido , Masculino , Ratas , Ratas Sprague-Dawley
10.
BMC Cancer ; 15: 276, 2015 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25880284

RESUMEN

BACKGROUND: Fibroblast growth factor receptor 1 (FGFR1) is correlated closely with the occurrence and development of lung cancer. FGFR1 kinase inhibitors have exhibited significant therapeutic effects against non-small-cell lung cancer. Recently, non-ATP competitive FGFR1 inhibitors have attracted extensive attention due to their low side effects. METHODS: Caliper Mobility Shift Assay was used for FGFR1 inhibition test and kinase inhibitory mode study. Hoechst staining and Annexin V/PI staining were used to evaluate the cell apoptosis induction. Western blot were then performed to confirm the intracellular FGFR1 inhibition and apoptotic protein expression. Finally, the anti-tumor effect and mechanism of Af23 and Ad23 was evaluated in vivo. RESULTS: In this study, we designed, synthesized and discovered two novel non-ATP competitive FGFR1 inhibitors, Af23 and Ad23, using NDGA as a leading compound. They had IC50 values of 0.6 µM and 1.4 µM against FGFR1 kinase, respectively. The kinase inhibitory assay carried at different ATP concentrations showed that the FGFR1 inhibition mode of both Ad23 and Af23 was non-ATP-competitive. Further, Af23 and Ad23 significantly suppressed FGFR1 phosphorylation and cell proliferation in non-small-cell lung cancer (NSLCLC) H460 cells and induced cell apoptosis. Af23 and Ad23 also showed significant anti-tumor activity in the H460 xenograft mouse model, accompanied with the inhibition of FGFR1, ERK, and AKT phosphorylation without exhibiting toxicity. CONCLUSIONS: These results indicate that Ad23 and Af23 are potential agents for the treatment of non-small-cell lung cancer. This work also provides a structural lead for the design of new non-ATP-competitive FGFR1 inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Masoprocol/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Masoprocol/síntesis química , Masoprocol/farmacología , Ratones , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Nat Prod ; 77(12): 2685-93, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25495797

RESUMEN

Twenty-seven diterpenes of six chemical classes, including seven new diterpenes (1, 2, 6, 10, 11, 16, and 19), have been isolated from a collection of the brown alga Dictyota plectens from the South China Sea. The structures of the new diterpenes were elucidated by extensive spectroscopic analysis and by comparison with reported data. In the in vitro assays, 9, 12, 14, 16, and 22 showed inhibitory activity against HIV-1 replication with IC50 values of 16.1-30.5 µM, compounds 5, 13, 24, and 26 exhibited anti-H5N1 activity with inhibition rates of 50%-62% at 30.0 µM, and 12 and 24 also showed potent inhibition against LPS-induced NO production with inhibition rates of 90% and 86%, respectively, at 10.0 µM.


Asunto(s)
Diterpenos/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Phaeophyceae/química , China , Diterpenos/química , VIH-1/efectos de los fármacos , Lipopolisacáridos/farmacología , Estructura Molecular
12.
Eur J Pharmacol ; 970: 176493, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484925

RESUMEN

Excessive activation of FGF19/fibroblast growth factor receptor 4 (FGFR4) signaling is associated with poor survival of patients with hepatocellular carcinoma (HCC). FGFR4 inhibitors show promise for HCC treatment. F30, an indazole derivative designed through computer-aided drug design targeting FGFR4, demonstrated anti-HCC activity as described in our previous studies. However, the precise molecular mechanisms underlying F30's anticancer effects remain largely unexplored. We report here that F30 could effectively induce ferroptosis in HCC cells. The concentrations of cellular ferrous iron, the peroxidation of cell membranes and the homeostasis of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) were dysregulated by F30, thereby affecting cellular redox status. Induction of ferroptosis in HCC by F30 was inhibited by specific ferroptosis inhibitor ferrostatin-1. F30 upregulates various ferroptosis-related genes, including the heme oxygenase enzymes 1 (HMOX1), a key mediator of redox regulation. Surprisingly, F30-induced ferroptosis in HCC is dependent on HMOX1. The dysregulation of cellular ferrous iron concentrations and cell membrane peroxidation was rescued when knocking down HMOX1 with specific small interfering RNA. These findings shed light on the molecular mechanisms underlying FGFR4-targeting F30's anti-HCC effects and suggest that FGFR4 inactivation could be beneficial for HCC treatment involving ferroptosis.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Hierro , Hemo-Oxigenasa 1
13.
Br J Pharmacol ; 181(5): 712-734, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37766498

RESUMEN

BACKGROUND AND PURPOSE: Autophagy is a protective factor for controlling neuronal damage, while necroptosis promotes neuroinflammation after spinal cord injury (SCI). DADLE (D-Ala2 , D-Leu5 ]-enkephalin) is a selective agonist for delta (δ) opioid receptor and has been identified as a promising drug for neuroprotection. The aim of this study was to investigate the mechanism/s by which DADLE causes locomotor recovery following SCI. EXPERIMENTAL APPROACH: Spinal cord contusion model was used and DADLE was given by i.p. (16 mg·kg-1 ) in mice for following experiments. Motor function was assessed by footprint and Basso mouse scale (BMS) score analysis. Western blotting used to evaluate related protein expression. Immunofluorescence showed the protein expression in each cell and its distribution. Network pharmacology analysis was used to find the related signalling pathways. KEY RESULTS: DADLE promoted functional recovery after SCI. In SCI model of mice, DADLE significantly increased autophagic flux and inhibited necroptosis. Concurrently, DADLE restored autophagic flux by decreasing lysosomal membrane permeabilization (LMP). Additionally, chloroquine administration reversed the protective effect of DADLE to inhibit necroptosis. Further analysis showed that DADLE decreased phosphorylated cPLA2 , overexpression of cPLA2 partially reversed DADLE inhibitory effect on LMP and necroptosis, as well as the promotion autophagy. Finally, AMPK/SIRT1/p38 pathway regulating cPLA2 is involved in the action DADLE on SCI and naltrindole inhibited DADLE action on δ receptor and on AMPK signalling pathway. CONCLUSION AND IMPLICATION: DADLE causes its neuroprotective effects on SCI by promoting autophagic flux and inhibiting necroptosis by decreasing LMP via activating δ receptor/AMPK/SIRT1/p38/cPLA2 pathway.


Asunto(s)
Leucina Encefalina-2-Alanina , Traumatismos de la Médula Espinal , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Leucina Encefalina-2-Alanina/metabolismo , Leucina Encefalina-2-Alanina/farmacología , Lisosomas/metabolismo , Fosfolipasas/metabolismo , Receptores Opioides delta/metabolismo , Recuperación de la Función , Sirtuina 1/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo
14.
Br J Pharmacol ; 181(7): 1068-1090, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37850255

RESUMEN

BACKGROUND AND PURPOSE: Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH: Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS: The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS: BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.


Asunto(s)
Piroptosis , Daño por Reperfusión , Humanos , Especies Reactivas de Oxígeno/metabolismo , Catelicidinas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Células Endoteliales/metabolismo , Calcineurina/farmacología , Autofagia , Daño por Reperfusión/metabolismo , Factores de Transcripción
15.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37581847

RESUMEN

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Proteínas Proto-Oncogénicas c-akt , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piroptosis , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Autofagia
16.
Adv Sci (Weinh) ; 11(24): e2307238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639443

RESUMEN

Preventing and treating avascular necrosis at the distal end of the flaps are critical to surgery success, but current treatments are not ideal. A recent study shows that apoptotic bodies (ABs) generated near the site of apoptosis can be taken up and promote cell proliferation. The study reveals that ABs derived from fibroblast-like cells in the subcutaneous connective tissue (FSCT cells) of skin flaps promoted ischaemic flap survival. It is also found that ABs inhibited cell death and oxidative stress and promoted M1-to-M2 polarization in macrophages. Transcriptome sequencing and protein level testing demonstrated that ABs promoted ischaemic flap survival in endothelial cells and macrophages by inhibiting ferroptosis via the KEAP1-Nrf2 axis. Furthermore, microRNA (miR) sequencing data and in vitro and in vivo experiments demonstrated that ABs inhibited KEAP1 by delivering miR-339-5p to exert therapeutic effects. In conclusion, FSCT cell-derived ABs inhibited ferroptosis, promoted the macrophage M1-to-M2 transition via the miR-339-5p/KEAP1/Nrf2 axis and promoted ischaemic flap survival. These results provide a potential therapeutic strategy to promote ischaemic flap survival by administering ABs.


Asunto(s)
Ferroptosis , Fibroblastos , Proteína 1 Asociada A ECH Tipo Kelch , MicroARNs , Factor 2 Relacionado con NF-E2 , Colgajos Quirúrgicos , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ferroptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Isquemia/metabolismo , Isquemia/genética , Masculino , Apoptosis/genética , Tejido Conectivo/metabolismo , Transducción de Señal/genética
17.
J Med Chem ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145988

RESUMEN

Receptor-binding peptides are promising candidates for tumor target therapy. However, the inability to occupy "hot spots" on the PPI interface and rapid metabolic instability are significant limitations to their clinical application. We investigated a new strategy in which an FGFR1-binding peptide (Pep1) was site-specifically functionalized with the dinitrophenyl (DNP) hapten at the C-terminus. The resulting Pep1-DNP conjugates retained FGFR1 binding affinity and exhibited a similar potency in inhibiting FGF2-dependent cell proliferation, comparable to that of native Pep1 in vitro. In addition, three conjugates could recruit anti-DNP antibodies onto the surface of cancer cells, thereby mediating the CDC efficacy. In vivo pharmacokinetic studies and antitumor studies demonstrated that optimal conjugate 9 exhibited significantly prolonged half-lives and improved antitumor efficacy without prominent toxicity compared to those of native Pep1. This is a general and cost-effective approach for generating peptidomimetic immunotherapeutics with multiple antitumor mechanisms that may have broad applications in cancer therapy.

18.
Burns Trauma ; 12: tkae035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855574

RESUMEN

Background: Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression. Methods: A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps. Results: NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206. Conclusions: NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.

19.
BMC Cancer ; 13: 494, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24156374

RESUMEN

BACKGROUND: Recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. Pharmacological interventions that effectively enhance tumor cell death through activating ER stress have attracted a great deal of attention for anti-cancer therapy. METHODS: A bio-evaluation on 113 curcumin analogs against four cancer cell lines was performed through MTT assay. Furthermore, real time cell assay and flow cytometer were used to evaluate the apoptotic induction of (1E,4E)-1,5-bis(5-bromo-2-ethoxyphenyl)penta-1,4-dien-3-one (B82). Western blot, RT-qPCR, and siRNA were then utilized to confirm whether B82-induced apoptosis is mediated through activating ER stress pathway. Finally, the in vivo anti-tumor effect of B82 was evaluated. RESULTS: B82 exhibited strong anti-tumor activity in non-small cell lung cancer (NSCLC) H460 cells. Treatment with B82 significantly induced apoptosis in H460 cells in vitro and inhibited H460 tumor growth in vivo. Further studies demonstrated that the B82-induced apoptosis is mediated by activating ER stress both in vitro and in vivo. CONCLUSIONS: A new monocarbonyl analog of curcumin, B82, exhibited anti-tumor effects on H460 cells via an ER stress-mediated mechanism. B82 could be further explored as a potential anticancer agent for the treatment of NSCLC.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Curcumina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Animales , Antineoplásicos/toxicidad , Antioxidantes/toxicidad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/toxicidad , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Bioorg Med Chem ; 21(11): 3058-65, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23611769

RESUMEN

We previously reported the design and discovery of three series of 5-carbon linker-containing mono-carbonyl analogs of curcumin (MCACs) as excellent anti-inflammatory agents. In continuation of our ongoing research, we designed and synthesized the fourth series of MCACs, whose central linker is a piperid-4-one. Their inhibitory effects against IL-6 production were evaluated in lipopolysaccharide (LPS)-stimulated macrophages. Among them, compounds F8, F29, F33, F35, and F36 exhibited the IC50 values under 5 µM. The structure-activity relationship was discussed. Mechanistically, F35 and F36 dose-dependently prevented LPS-induced NF-κB and ERK activation. Finally, pretreatment with F35 and F36 significantly protected the C57B/L6 mice from LPS-induced septic death. Together, these data present a series of new analogs of curcumin as promising anti-inflammatory agents.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Curcumina/análogos & derivados , Piperidonas/síntesis química , Sepsis/prevención & control , Animales , Antiinflamatorios no Esteroideos/farmacología , Línea Celular , Curcumina/síntesis química , Curcumina/farmacología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Inflamación , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/agonistas , FN-kappa B/genética , FN-kappa B/metabolismo , Piperidonas/farmacología , Sepsis/inducido químicamente , Sepsis/metabolismo , Sepsis/mortalidad , Transducción de Señal , Relación Estructura-Actividad , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA