RESUMEN
This study aimed to explore the underlying framework and data characteristics of Tibetan prescription information. The information on Tibetan medicine prescriptions was collected based on 11 Tibetan medicine classics, such as Four Medical Canons(Si Bu Yi Dian). The optimal classification method was used to summarize the information structure of Tibetan medicine prescriptions and sort out the key problems and solutions in data collection, standardization, translation, and analysis. A total of 11 316 prescriptions were collected, involving 139 011 entries and 63 567 pieces of efficacy information of drugs in prescriptions. The information on Tibe-tan medicine prescriptions could be summarized into a "seven-in-one" framework of "serial number-source-name-composition-efficacy-appendix-remarks" and 18 expansion layers, which contained all information related to the inheritance, processing, origin, dosage, semantics, etc. of prescriptions. Based on the framework, this study proposed a "historical timeline" method for mining the origin of prescription inheritance, a "one body and five layers" method for formulating prescription drug specifications, a "link-split-link" method for constructing efficacy information, and an advanced algorithm suitable for the research of Tibetan prescription knowledge discovery. Tibetan medicine prescriptions have obvious characteristics and advantages under the guidance of the theories of "three factors", "five sources", and "Ro-nus-zhu-rjes" of Tibetan medicine. Based on the characteristics of Tibetan medicine prescriptions, this study proposed a multi-level and multi-attribute underlying data architecture, providing new methods and models for the construction of Tibetan medicine prescription information database and knowledge discovery and improving the consistency and interoperability of Tibetan medicine prescription information with standards at all levels, which is expected to realize the "ancient and modern connection-cleaning up the source-data sharing", so as to promote the informatization and modernization research path of Tibetan medicine prescriptions.
Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional Tibetana , Descubrimiento del Conocimiento , Prescripciones de Medicamentos , Bases de Datos Factuales , Algoritmos , Medicina Tradicional China , Medicamentos Herbarios Chinos/uso terapéuticoRESUMEN
Hypoxic pulmonary hypertension (HPH) is a progressive and irreversible disease that reduces survival. Echinacoside is a phenylethanoid glycoside from Tibetan herbs known for its vasorelaxant effect and for inhibiting the proliferation of rat pulmonary arterial smooth muscle cells. This study aimed to investigate the effect of echinacoside on HPH. Sprague Dawley rats were housed in a hypobaric hypoxia chamber (4500 m) for 28 days to obtain the HPH model. Echinacoside (3.75, 7.5, 15, 30 and 40 mg/kg) was administered by intraperitoneal injection from the 1st to the 28th day. The mean pulmonary artery pressure (mPAP), right ventricular hypertrophy index, hemoglobin, hematocrit, red blood cell concentration and morphological change of pulmonary arteries were evaluated. Vascular perfusion assay was used to assess the pulmonary artery function. Echinacoside reduced mPAP, hemoglobin, hematocrit, right ventricular hypertrophy index and mean wall thickness% of pulmonary arteries in HPH rats. It significantly increased maximum vasoconstriction percentage of pulmonary arteries induced by noradrenaline in a dose-dependent manner. In addition, it improved the responsiveness of pulmonary arteries to acetylcholine and sodium nitroprusside. Therefore, Echinacoside might be an effective treatment against HPH, since it regulated pulmonary artery endothelium and smooth muscle layer function and improved the remodeling of pulmonary artery.
Asunto(s)
Glicósidos/administración & dosificación , Glicósidos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Fitoterapia , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Remodelación Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glicósidos/uso terapéutico , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Técnicas In Vitro , Inyecciones Intraperitoneales , Masculino , Ratas Sprague-Dawley , VasodilatadoresRESUMEN
The investigation of interactions between different molecules is a crucial aspect of understanding disease pathogenesis and screening for drug targets. Umbelliferone, an active ingredient in Tibetan medicine Vicatia thibetica, exhibits an immunomodulatory effect with an unknown mechanism. The CD40 protein is a key target in the immune response. Therefore, this study employs the principle of differential scanning fluorescence technology to analyze the interactions between CD40 protein and umbelliferone using fluorescent enzyme markers. Initially, the stability of the protein fluorescent orange dye was experimentally verified, and the optimal dilution ratio of 1:500 was determined. Subsequently, it was observed that the temperature melting (Tm) value of CD40 protein tended to decrease with an increase in concentration. Interestingly, the interaction between CD40 protein and umbelliferone was found to enhance the thermal stability of CD40 protein. This study represents the first attempt to detect the binding potential of small molecule compounds and proteins using fluorescence microplates and fluorescent dyes. The technique is characterized by high sensitivity and accuracy, promising advancements in the fields of protein stability, protein structure, and protein-ligand interactions, thus facilitating further research and exploration.
Asunto(s)
Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes , Fluorescencia , Inmunomodulación , CintigrafíaRESUMEN
There are thousands of medicinal formulas in the ancient Tibetan medical texts. Researching the composition rules of Tibetan medical formulas is a very important step in the study and practice of Tibetan medicine. In order to explore the composition rules of Tibetan medical formulas this article draws on the research methods utilized in related fields of traditional Chinese medicine adapted to the unique characteristics of Tibetan medicine. This is the first time the utilization of data mining methods has been proposed for the research of Tibetan medical formulas. It is believed that data mining techniques can aid researchers in discovering the composition rules of Tibetan medical formulas in accordance with Tibetan medical theory.
Asunto(s)
Química Farmacéutica , Minería de Datos , Medicamentos Herbarios Chinos/análisis , Plantas Medicinales/química , Medicina Tradicional TibetanaRESUMEN
BACKGROUND: Rhodiola crenulate (R. crenulate), a famous Tibetan medicine, has been demonstrated to possess superiorly protective effects in high-altitude hypoxic brain injury (HHBI). However, its mechanisms on HHBI are still largely unknown. METHODS: Herein, the protective effects and underlying mechanisms of R. crenulate on HHBI of BABL/c mice were explored through in vivo experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE) (0.5, 1.0 and 2.0 g/kg) was given by gavage for 7 days. Pathological changes and neuronal viability of mice hippocampus and cortex were evaluated using H&E and Nissl staining, respectively. The brain water content (BWC) in mice was determined by calculating the ratio of dry to wet weight of brain tissue. And serum of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH-Px) and lactate dehydrogenase (LDH) were detected via commercial biochemical kits. Synchronously, the contents of total antioxidant capacity (T-AOC), lactic acid (LA), adenosine triphosphate (ATP), succinate dehydrogenase (SDH), pyruvate kinase (PK), Ca2+-Mg2+-ATPcase, Na+-K+-ATPcase, TNF-α, IL-1ß and IL-6 in brain tissue were quantitative analysis by corresponding ELISA assay. Subsequently, NLRP3, ZO-1, claudin-5, occluding, p-p65, p65, ASC, cleaved-caspase-1, caspase-1 and IL-18 were determined by immunofluorescent and western blot analyses. RESULTS: The results demonstrated that RCE remarkably alleviated pathological damage, BWC, as well enhanced neuronal viability. Furthermore, the oxidative stress injuries were reversely abrogated after RCE treatment, evidenced by the increases of SOD, GSH-Px and T-AOC, while the decreases of MDA and LDH contents. Marvelously, the administration of RCE rectified and balanced the abnormal energy metabolism via elevating the levels of ATP, SDH, PK, Ca2+-Mg2+-ATPcase and Na+-K+-ATPcase, and lowering LA. Simultaneously, the expression of tight junction proteins (ZO-1, claudin-5 and occludin) was enhanced, illustrating RCE treatment might maintain the integrity of blood-brain barrier (BBB). Additionally, RCE treatment confined the contents of IL-6, IL-1ß and TNF-α, and attenuated fluorescent signal of NLRP3 protein. Concurrently, the results of western blot indicated that RCE treatment dramatically restrained p-p65/p65, ASC, NLRP3, cleaved-caspase-1/caspase-1 and IL-18 protein expressions in brain tissues of mice. CONCLUSION: RCE may afford a protectively intervention in HHBI of mice through suppressing the oxidative stress, improving energy metabolism and the integrity of BBB, and subsiding inflammatory responses via the NF-κB/NLRP3 signaling pathway. As a promising agent for the treatment of mice HHBI, the deep-crossing molecular mechanisms of R. crenulate still needs to be further elucidated to identify novel core hub targets.
Asunto(s)
Lesiones Encefálicas , Rhodiola , Adenosina Trifosfato , Animales , Antioxidantes/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Caspasa 1 , Claudina-5 , Hipoxia/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-18/uso terapéutico , Interleucina-6 , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfaRESUMEN
Salidroside (Sal), an active ingredient from Rhodiola crenulate, has been reported to exert neuroprotection in cerebral injury from hypobaric hypoxia (HH) at high altitude. However, it remains to be understood whether its protective effects are related to inflammation suppression. In the present work, we aimed to reveal the mechanism of Sal attenuating HH-induced brain injury in mice caused by an animal hypobaric and hypoxic chamber. Our results provided that Sal could attenuate HH-evoked pathological injury and oxidative stress response by decreasing the content of ROS and MDA, and elevating the activities of SOD and GSH-Px. Sal treatment could partly enhance the energy metabolism, evidenced by increasing the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, ATP, SDH, HK and PK, while decreasing the release of LDH and LD. Meanwhile, Sal administration reversed the degradation of tight junction proteins ZO-1, Occludin and Claudin-5. Further, the increased levels of TNF-α, IL-1ß and IL-6 were confined with Sal administration under the HH condition. Importantly, Sal could downregulate the proteins expression of p-NF-κB-p65, NLRP3, cleaved-Caspase-1 and ASC. Sal also decreased the protein expression of iNOS and COX2 with the increased CD206 and Arg1 expression. Taken together, these data provided that the inhibited NF-κB/NLRP3 pathway by Sal could attenuate HH-induced cerebral oxidative stress injury, inflammatory responses and the blood brain barrier (BBB) damage, attributing to the improved energy metabolism and the microglial phenotype of anti-inflammatory M2. The findings suggested that Sal was expected to be a promising anti-inflammatory agent for high altitude HH-induced brain injury.