RESUMEN
Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Nanotecnología , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animales , Conducta Animal , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , Colesterol/metabolismo , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad/efectos de los fármacos , Inmunoterapia , Lipoproteínas HDL/metabolismo , Ratones Endogámicos C57BL , Primates , Distribución Tisular/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacosRESUMEN
Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.
Asunto(s)
Supervivencia de Injerto/inmunología , Terapia de Inmunosupresión , Inflamación/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Trasplante de Órganos , Aloinjertos , Animales , Biomarcadores , Proteína HMGB1/genética , Tolerancia Inmunológica , Inmunidad Innata , Memoria Inmunológica , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Vimentina/genéticaRESUMEN
BACKGROUND AND AIMS: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS: Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS: In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.
Asunto(s)
Enfermedades de las Arterias Carótidas , Tomografía de Emisión de Positrones , Trastornos por Estrés Postraumático , Humanos , Femenino , Masculino , Adulto , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/fisiopatología , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Radiofármacos , Estudios de Casos y Controles , Estrés Psicológico/fisiopatología , Estrés Psicológico/complicacionesRESUMEN
High-risk atherosclerotic plaques are characterized by active inflammation and abundant leaky microvessels. We present a self-gated, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition with compressed sensing reconstruction and apply it to assess longitudinal changes in endothelial permeability in the aortic root of Apoe-/- atherosclerotic mice during natural disease progression. Twenty-four, 8-week-old, female Apoe-/- mice were divided into four groups (n = 6 each) and imaged with self-gated DCE-MRI at 4, 8, 12, and 16 weeks after high-fat diet initiation, and then euthanized for CD68 immunohistochemistry for macrophages. Eight additional mice were kept on a high-fat diet and imaged longitudinally at the same time points. Aortic-root pseudo-concentration curves were analyzed using a validated piecewise linear model. Contrast agent wash-in and washout slopes (b1 and b2 ) were measured as surrogates of aortic root endothelial permeability and compared with macrophage density by immunohistochemistry. b2 , indicating contrast agent washout, was significantly higher in mice kept on an high-fat diet for longer periods of time (p = 0.03). Group comparison revealed significant differences between mice on a high-fat diet for 4 versus 16 weeks (p = 0.03). Macrophage density also significantly increased with diet duration (p = 0.009). Spearman correlation between b2 from DCE-MRI and macrophage density indicated a weak relationship between the two parameters (r = 0.28, p = 0.20). Validated piecewise linear modeling of the DCE-MRI data showed that the aortic root contrast agent washout rate is significantly different during disease progression. Further development of this technique from a single-slice to a 3D acquisition may enable better investigation of the relationship between in vivo imaging of endothelial permeability and atherosclerotic plaques' genetic, molecular, and cellular makeup in this important model of disease.
Asunto(s)
Aorta Torácica , Medios de Contraste , Animales , Femenino , Ratones , Progresión de la Enfermedad , Imagen por Resonancia MagnéticaRESUMEN
Cardiovascular disease due to atherosclerosis is still the main cause of morbidity and mortality worldwide. This disease is a complex systemic disorder arising from a network of pathological processes within the arterial vessel wall, and, outside of the vasculature, in the hematopoietic system and organs involved in metabolism. Recent years have seen tremendous efforts in the development and validation of quantitative imaging technologies for the noninvasive evaluation of patients with atherosclerotic cardiovascular disease. Specifically, the advent of combined positron emission tomography and magnetic resonance imaging scanners has opened new exciting opportunities in cardiovascular imaging. In this review, we will describe how combined positron emission tomography/magnetic resonance imaging scanners can be leveraged to evaluate atherosclerotic cardiovascular disease at the whole-body level, with specific focus on preclinical animal models of disease, from mouse to nonhuman primates. We will broadly describe 3 major areas of application: (1) vascular imaging, for advanced atherosclerotic plaque phenotyping and evaluation of novel imaging tracers or therapeutic interventions; (2) assessment of the ischemic heart and brain; and (3) whole-body imaging of the hematopoietic system. Finally, we will provide insights on potential novel technical developments which may further increase the relevance of integrated positron emission tomography/magnetic resonance imaging in preclinical atherosclerosis studies.
Asunto(s)
Aterosclerosis/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Imagen de Cuerpo Entero/métodos , Animales , Aterosclerosis/patología , Aterosclerosis/terapia , Modelos Animales de Enfermedad , Diseño de Equipo , Imagen por Resonancia Magnética/instrumentación , Ratones , Imagen Multimodal , Tomografía de Emisión de Positrones/instrumentación , Valor Predictivo de las Pruebas , Primates , Reproducibilidad de los Resultados , Imagen de Cuerpo Entero/instrumentaciónRESUMEN
BACKGROUND: The COVID-19 pandemic has resulted in a high degree of psychological distress among health care workers (HCWs). There is a need to characterize which HCWs are at an increased risk of developing psychological effects from the pandemic. Given the differences in the response of individuals to stress, an analysis of both the perceived and physiological consequences of stressors can provide a comprehensive evaluation of its impact. OBJECTIVE: This study aimed to determine characteristics associated with longitudinal perceived stress in HCWs and to assess whether changes in heart rate variability (HRV), a marker of autonomic nervous system function, are associated with features protective against longitudinal stress. METHODS: HCWs across 7 hospitals in New York City, NY, were prospectively followed in an ongoing observational digital study using the custom Warrior Watch Study app. Participants wore an Apple Watch for the duration of the study to measure HRV throughout the follow-up period. Surveys measuring perceived stress, resilience, emotional support, quality of life, and optimism were collected at baseline and longitudinally. RESULTS: A total of 361 participants (mean age 36.8, SD 10.1 years; female: n=246, 69.3%) were enrolled. Multivariate analysis found New York City's COVID-19 case count to be associated with increased longitudinal stress (P=.008). Baseline emotional support, quality of life, and resilience were associated with decreased longitudinal stress (P<.001). A significant reduction in stress during the 4-week period after COVID-19 diagnosis was observed in the highest tertial of emotional support (P=.03) and resilience (P=.006). Participants in the highest tertial of baseline emotional support and resilience had a significantly different circadian pattern of longitudinally collected HRV compared to subjects in the low or medium tertial. CONCLUSIONS: High resilience, emotional support, and quality of life place HCWs at reduced risk of longitudinal perceived stress and have a distinct physiological stress profile. Our findings support the use of these characteristics to identify HCWs at risk of the psychological and physiological stress effects of the pandemic.
Asunto(s)
COVID-19 , Pandemias , Adulto , Prueba de COVID-19 , Femenino , Personal de Salud , Humanos , Ciudad de Nueva York , Calidad de Vida , SARS-CoV-2 , Estrés Fisiológico , Estrés Psicológico/epidemiologíaRESUMEN
PURPOSE: 19 F-MRI is gaining widespread interest for cell tracking and quantification of immune and inflammatory cells in vivo. Different fluorinated compounds can be discriminated based on their characteristic MR spectra, allowing in vivo imaging of multiple 19 F compounds simultaneously, so-called multicolor 19 F-MRI. We introduce a method for multicolor 19 F-MRI using an iterative sparse deconvolution method to separate different 19 F compounds and remove chemical shift artifacts arising from multiple resonances. METHODS: The method employs cycling of the readout gradient direction to alternate the spatial orientation of the off-resonance chemical shift artifacts, which are subsequently removed by iterative sparse deconvolution. Noise robustness and separation was investigated by numerical simulations. Mixtures of fluorinated oils (PFCE and PFOB) were measured on a 7T MR scanner to identify the relation between 19 F signal intensity and compound concentration. The method was validated in a mouse model after intramuscular injection of fluorine probes, as well as after intravascular injection. RESULTS: Numerical simulations show efficient separation of 19 F compounds, even at low signal-to-noise ratio. Reliable chemical shift artifact removal and separation of PFCE and PFOB signals was achieved in phantoms and in vivo. Signal intensities correlated excellently to the relative 19 F compound concentrations (r-2 = 0.966/0.990 for PFOB/PFCE). CONCLUSIONS: The method requires minimal sequence adaptation and is therefore easily implemented on different MRI systems. Simulations, phantom experiments, and in-vivo measurements in mice showed effective separation and removal of chemical shift artifacts below noise level. We foresee applicability for simultaneous in-vivo imaging of 19 F-containing fluorine probes or for detection of 19 F-labeled cell populations.
Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética con Fluor-19 , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/efectos de los fármacos , Nanopartículas/química , Bazo/efectos de los fármacos , Algoritmos , Animales , Artefactos , Rastreo Celular/métodos , Simulación por Computador , Éteres Corona/química , Flúor , Fluorocarburos/química , Hidrocarburos Bromados , Inyecciones Intramusculares , Masculino , Ratones , Fantasmas de ImagenRESUMEN
Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects' plaques.
Asunto(s)
Aterosclerosis/diagnóstico por imagen , Liposomas/análisis , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioisótopos/análisis , Circonio/análisis , Animales , Aorta Abdominal/diagnóstico por imagen , Masculino , Conejos , Distribución TisularRESUMEN
Vasculitis is a systemic disease characterized by immune-mediated injury of blood vessels. Current treatments for vasculitis, such as glucocorticoids and alkylating agents, are associated with significant side effects. Furthermore, the management of both small and large vessel vasculitis is challenging because of a lack of robust markers of disease activity. Recent research has advanced our understanding of the pathogenesis of both small and large vessel vasculitis, and this has led to the development of novel biologic therapies capable of targeting key cytokine and cellular effectors of the inflammatory cascade. In parallel, a diverse range of imaging modalities with the potential to monitor vessel inflammation are emerging. Continued expansion of combined structural and molecular imaging using positron emission tomography with computed tomography or magnetic resonance imaging may soon provide reliable longitudinal tracking of vascular inflammation. In addition, the emergence of radiotracers able to assess macrophage activation and immune checkpoint activity represents an exciting new frontier in imaging vascular inflammation. In the near future, these advances will allow more precise imaging of disease activity enabling clinicians to offer more targeted and individualized patient management.
Asunto(s)
Vasculitis Sistémica/diagnóstico por imagen , Vasculitis Sistémica/tratamiento farmacológico , Eosinófilos/inmunología , Humanos , Depleción Linfocítica , Imagen por Resonancia Magnética , Imagen Molecular , Poliarteritis Nudosa/diagnóstico por imagen , Poliarteritis Nudosa/inmunología , Tomografía de Emisión de Positrones , Vasculitis Sistémica/inmunología , Tomografía Computarizada por Rayos XRESUMEN
Atherosclerosis is a prevalent disease affecting a large portion of the population at one point in their lives. There is an unmet need for noninvasive diagnostics to identify and characterize at-risk plaque phenotypes noninvasively and in vivo, to improve the stratification of patients with cardiovascular disease, and for treatment evaluation. Magnetic resonance imaging is uniquely positioned to address these diagnostic needs. However, currently available magnetic resonance imaging methods for vessel wall imaging lack sufficient discriminative and predictive power to guide the individual patient needs. To address this challenge, physicists are pushing the boundaries of magnetic resonance atherosclerosis imaging to increase image resolution, provide improved quantitative evaluation of plaque constituents, and obtain readouts of disease activity such as inflammation. Here, we review some of these important developments, with specific focus on emerging applications using high-field magnetic resonance imaging, the use of quantitative relaxation parameter mapping for improved plaque characterization, and novel 19F magnetic resonance imaging technology to image plaque inflammation.
Asunto(s)
Aterosclerosis/diagnóstico por imagen , Medios de Contraste , Interpretación de Imagen Asistida por Computador , Angiografía por Resonancia Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagen , Aterosclerosis/patología , Flúor , Humanos , Imagen por Resonancia Magnética/métodos , Sensibilidad y EspecificidadRESUMEN
Cardiovascular disease due to atherosclerosis is the number one cause of morbidity and mortality worldwide. In the past twenty years, compelling preclinical and clinical data have indicated that a maladaptive inflammatory response plays a crucial role in the development of atherosclerosis initiation and progression in the vasculature, all the way to the onset of life-threatening cardiovascular events. Furthermore, inflammation is key to heart and brain damage and healing after myocardial infarction or stroke. Recent evidence indicates that this interplay between the vasculature, organs target of ischemia and the immune system is mediated by the activation of hematopoietic organs (bone marrow and spleen). In this evolving landscape, non-invasive imaging is becoming more and more essential to support either mechanistic preclinical studies to investigate the role of inflammation in cardiovascular disease (CVD), or as a translational tool to quantify inflammation in the cardiovascular system and hematopoietic organs in patients. In this review paper, we will describe the clinical applications of non-invasive imaging to quantify inflammation in the vasculature, infarcted heart and brain, and hematopoietic organs in patients with cardiovascular disease, with specific focus on [18F]FDG PET and other novel inflammation-specific radiotracers. Furthermore, we will briefly describe the most recent clinical applications of other imaging techniques such as MRI, SPECT, CT, CEUS and OCT in this arena.
Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Inflamación/diagnóstico por imagen , Inflamación/metabolismo , Investigación Biomédica TraslacionalRESUMEN
BACKGROUND: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging. METHODS: We introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). RESULTS: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. CONCLUSIONS: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.
Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Adulto , Animales , Huesos/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conejos , Fluoruro de SodioRESUMEN
Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library's nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis, we quantitatively evaluated the library's immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases.
Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Inmunoterapia , Nanopartículas/química , Animales , Antiinflamatorios , Apolipoproteínas E/deficiencia , Aterosclerosis/patología , Autorradiografía , Benzoatos/agonistas , Benzoatos/química , Bencilaminas/agonistas , Bencilaminas/química , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular , Nanomedicina , Nanopartículas/metabolismo , Tomografía de Emisión de Positrones/métodos , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: Emotional stress is associated with increased risk of cardiovascular disease. We imaged the amygdala, a brain region involved in stress, to determine whether its resting metabolic activity predicts risk of subsequent cardiovascular events. METHODS: Individuals aged 30 years or older without known cardiovascular disease or active cancer disorders, who underwent 18F-fluorodexoyglucose PET/CT at Massachusetts General Hospital (Boston, MA, USA) between Jan 1, 2005, and Dec 31, 2008, were studied longitudinally. Amygdalar activity, bone-marrow activity, and arterial inflammation were assessed with validated methods. In a separate cross-sectional study we analysed the relation between perceived stress, amygdalar activity, arterial inflammation, and C-reactive protein. Image analyses and cardiovascular disease event adjudication were done by mutually blinded researchers. Relations between amygdalar activity and cardiovascular disease events were assessed with Cox models, log-rank tests, and mediation (path) analyses. FINDINGS: 293 patients (median age 55 years [IQR 45·0-65·5]) were included in the longitudinal study, 22 of whom had a cardiovascular disease event during median follow-up of 3·7 years (IQR 2·7-4·8). Amygdalar activity was associated with increased bone-marrow activity (r=0·47; p<0·0001), arterial inflammation (r=0·49; p<0·0001), and risk of cardiovascular disease events (standardised hazard ratio 1·59, 95% CI 1·27-1·98; p<0·0001), a finding that remained significant after multivariate adjustments. The association between amygdalar activity and cardiovascular disease events seemed to be mediated by increased bone-marrow activity and arterial inflammation in series. In the separate cross-sectional study of patients who underwent psychometric analysis (n=13), amygdalar activity was significantly associated with arterial inflammation (r=0·70; p=0·0083). Perceived stress was associated with amygdalar activity (r=0·56; p=0·0485), arterial inflammation (r=0·59; p=0·0345), and C-reactive protein (r=0·83; p=0·0210). INTERPRETATION: In this first study to link regional brain activity to subsequent cardiovascular disease, amygdalar activity independently and robustly predicted cardiovascular disease events. Amygdalar activity is involved partly via a path that includes increased bone-marrow activity and arterial inflammation. These findings provide novel insights into the mechanism through which emotional stressors can lead to cardiovascular disease in human beings. FUNDING: None.
Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/psicología , Estrés Psicológico/metabolismo , Anciano , Arterias/fisiopatología , Aterosclerosis/fisiopatología , Médula Ósea/metabolismo , Enfermedades Cardiovasculares/diagnóstico por imagen , Estudios Transversales , Fluorodesoxiglucosa F18 , Hematopoyesis/fisiología , Humanos , Inflamación/fisiopatología , Estudios Longitudinales , Persona de Mediana Edad , Percepción , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Factores de RiesgoRESUMEN
The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.
Asunto(s)
Angiografía por Resonancia Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/etiología , Aterosclerosis/fisiopatología , Fenómenos Biomecánicos , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/fisiopatología , Simulación por Computador , Medios de Contraste , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/estadística & datos numéricos , Gadolinio , Humanos , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional/métodos , Imagenología Tridimensional/estadística & datos numéricos , Angiografía por Resonancia Magnética/estadística & datos numéricos , Modelos Cardiovasculares , Imagen Multimodal , Tomografía de Emisión de Positrones , Rigidez VascularRESUMEN
Active targeting of nanoparticles through surface functionalization is a common strategy to enhance tumor delivery specificity. However, active targeting strategies tend to work against long polyethylene glycol's shielding effectiveness and associated favorable pharmacokinetics. To overcome these limitations, we developed a matrix metalloproteinase-2 sensitive surface-converting polyethylene glycol coating. This coating prevents nanoparticle-cell interaction in the bloodstream, but, once exposed to matrix metalloproteinase-2, i.e., when the nanoparticles accumulate within the tumor interstitium, the converting polyethylene glycol coating is cleaved, and targeting ligands become available for binding to tumor cells. In this study, we applied a comprehensive multimodal imaging strategy involving optical, nuclear, and magnetic resonance imaging methods to evaluate this coating approach in a breast tumor mouse model. The data obtained revealed that this surface-converting coating enhances the nanoparticle's blood half-life and tumor accumulation and ultimately results in improved tumor-cell targeting. Our results show that this enzyme-specific surface-converting coating ensures a high cell-targeting specificity without compromising favorable nanoparticle pharmacokinetics.
Asunto(s)
Neoplasias de la Mama/patología , Imagen por Resonancia Magnética/métodos , Metaloproteinasa 2 de la Matriz/metabolismo , Imagen Multimodal/métodos , Nanopartículas/administración & dosificación , Espectrofotometría Infrarroja/métodos , Animales , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Metaloproteinasa 2 de la Matriz/química , Ratones , Ratones Desnudos , Nanopartículas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
RATIONALE: Local plaque macrophage proliferation and monocyte production in hematopoietic organs promote progression of atherosclerosis. Therefore, noninvasive imaging of proliferation could serve as a biomarker and monitor therapeutic intervention. OBJECTIVE: To explore (18)F-FLT positron emission tomography-computed tomography imaging of cell proliferation in atherosclerosis. METHODS AND RESULTS: (18)F-FLT positron emission tomography-computed tomography was performed in mice, rabbits, and humans with atherosclerosis. In apolipoprotein E knock out mice, increased (18)F-FLT signal was observed in atherosclerotic lesions, spleen, and bone marrow (standardized uptake values wild-type versus apolipoprotein E knock out mice, 0.05 ± 0.01 versus 0.17 ± 0.01, P<0.05 in aorta; 0.13 ± 0.01 versus 0.28 ± 0.02, P<0.05 in bone marrow; 0.06 ± 0.01 versus 0.22 ± 0.01, P<0.05 in spleen), corroborated by ex vivo scintillation counting and autoradiography. Flow cytometry confirmed significantly higher proliferation of macrophages in aortic lesions and hematopoietic stem and progenitor cells in the spleen and bone marrow in these mice. In addition, (18)F-FLT plaque signal correlated with the duration of high cholesterol diet (r(2)=0.33, P<0.05). Aortic (18)F-FLT uptake was reduced when cell proliferation was suppressed with fluorouracil in apolipoprotein E knock out mice (P<0.05). In rabbits, inflamed atherosclerotic vasculature with the highest (18)F-fluorodeoxyglucose uptake enriched (18)F-FLT. In patients with atherosclerosis, (18)F-FLT signal significantly increased in the inflamed carotid artery and in the aorta. CONCLUSIONS: (18)F-FLT positron emission tomography imaging may serve as an imaging biomarker for cell proliferation in plaque and hematopoietic activity in individuals with atherosclerosis.
Asunto(s)
Enfermedades de la Aorta/diagnóstico , Aterosclerosis/diagnóstico , Enfermedades de las Arterias Carótidas/diagnóstico , Proliferación Celular , Células Madre Hematopoyéticas , Macrófagos , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Animales , Aorta Torácica/diagnóstico por imagen , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Médula Ósea/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Colesterol en la Dieta , Didesoxinucleósidos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Células Madre Hematopoyéticas/diagnóstico por imagen , Humanos , Macrófagos/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Multimodal , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Conejos , Radiofármacos , Estudios Retrospectivos , Bazo/diagnóstico por imagen , Factores de TiempoRESUMEN
Therapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization. Here we show that an endothelialized microchip with controllable permeability can be used to probe nanoparticle translocation across an endothelial cell layer. To validate our in vitro model, we studied nanoparticle translocation in an in vivo rabbit model of atherosclerosis using a variety of preclinical and clinical imaging methods. Our results reveal that the translocation of lipid-polymer hybrid nanoparticles across the atherosclerotic endothelium is dependent on microvascular permeability. These results were mimicked with our microfluidic chip, demonstrating the potential utility of the model system.
Asunto(s)
Aterosclerosis/fisiopatología , Sistemas de Liberación de Medicamentos , Endotelio/metabolismo , Nanopartículas del Metal/química , Animales , Aterosclerosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Oro/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Imagen por Resonancia Magnética , Masculino , Microcirculación , Microfluídica , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Modelos Teóricos , Permeabilidad , Placa Aterosclerótica , Conejos , Resistencia al CorteRESUMEN
BACKGROUND: Alternatively spliced tissue factor (asTF) is a novel isoform of full-length tissue factor, which exhibits angiogenic activity. Although asTF has been detected in human plaques, it is unknown whether its expression in atherosclerosis causes increased neovascularization and an advanced plaque phenotype. METHODS AND RESULTS: Carotid (n=10) and coronary (n=8) specimens from patients with stable or unstable angina were classified as complicated or uncomplicated on the basis of plaque morphology. Analysis of asTF expression and cell type-specific expression revealed a strong expression and colocalization of asTF with macrophages and neovessels within complicated, but not uncomplicated, human plaques. Our results showed that the angiogenic activity of asTF is mediated via hypoxia-inducible factor-1α upregulation through integrins and activation of phosphatidylinositol-3-kinase/Akt and mitogen-activated protein kinase pathways. Hypoxia-inducible factor-1α upregulation by asTF also was associated with increased vascular endothelial growth factor expression in primary human endothelial cells, and vascular endothelial growth factor-Trap significantly reduced the angiogenic effect of asTF in vivo. Furthermore, asTF gene transfer significantly increased neointima formation and neovascularization after carotid wire injury in ApoE(-/-) mice. CONCLUSIONS: The results of this study provide strong evidence that asTF promotes neointima formation and angiogenesis in an experimental model of accelerated atherosclerosis. Here, we demonstrate that the angiogenic effect of asTF is mediated via the activation of the hypoxia-inducible factor-1/vascular endothelial growth factor signaling. This mechanism may be relevant to neovascularization and the progression and associated complications of human atherosclerosis as suggested by the increased expression of asTF in complicated versus uncomplicated human carotid and coronary plaques.
Asunto(s)
Empalme Alternativo/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neovascularización Patológica/fisiopatología , Placa Aterosclerótica/fisiopatología , Transducción de Señal/fisiología , Tromboplastina/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Arterias Carótidas/patología , Arterias Carótidas/fisiopatología , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neointima/fisiopatología , Placa Aterosclerótica/patología , Regulación hacia Arriba/fisiologíaRESUMEN
Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease.