Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Hum Genomics ; 17(1): 106, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007520

RESUMEN

BACKGROUND: Past studies suggest that there are changes in peripheral blood cell gene expression in response to ischaemic stroke; however, the specific changes which occur during the acute phase are poorly characterised. The current study aimed to identify peripheral blood cell genes specifically associated with the early response to ischaemic stroke using whole blood samples collected from participants diagnosed with ischaemic stroke (n = 29) or stroke mimics (n = 27) following emergency presentation to hospital. Long non-coding RNA (lncRNA), mRNA and micro-RNA (miRNA) abundance was measured by RNA-seq, and the consensusDE package was used to identify genes which were differentially expressed between groups. A sensitivity analysis excluding two participants with metastatic disease was also conducted. RESULTS: The mean time from symptom onset to blood collection was 2.6 h. Most strokes were mild (median NIH stroke scale score 2.0). Ten mRNAs (all down-regulated in samples provided by patients experiencing ischaemic stroke) and 30 miRNAs (14 over-expressed and 16 under-expressed in participants with ischaemic stroke) were significantly different between groups in the whole cohort and sensitivity analyses. No significant over-representation of gene ontology categories by the differentially expressed genes was observed. Random forest analysis suggested a panel of differentially expressed genes (ADGRG7 and miRNAs 96, 532, 6766, 6798 and 6804) as potential ischaemic stroke biomarkers, although modelling analyses demonstrated that these genes had poor diagnostic performance. CONCLUSIONS: This study provides evidence suggesting that the early response to minor ischaemic stroke is predominantly reflected by changes in the expression of miRNAs in peripheral blood cells. Further work in independent cohorts particularly in patients with more severe stroke is needed to validate these findings and investigate their clinical relevance.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/genética , Isquemia Encefálica/genética , Isquemia Encefálica/complicaciones , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/complicaciones , MicroARNs/genética , Estudios de Casos y Controles , Expresión Génica
2.
Proc Biol Sci ; 289(1986): 20221504, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350215

RESUMEN

Bryozoans are mostly sessile colonial invertebrates that inhabit all kinds of aquatic ecosystems. Extant bryozoan species fall into two clades with one of them, Phylactolaemata, being the only exclusively freshwater clade. Phylogenetic relationships within the class Phylactolaemata have long been controversial owing to their limited distinguishable characteristics that reflect evolutionary relationships. Here, we present the first phylogenomic analysis of Phylactolaemata using transcriptomic data combined with dense taxon sampling of six families to better resolve the interrelationships and to estimate divergence time. Using maximum-likelihood and Bayesian inference approaches, we recovered a robust phylogeny for Phylactolaemata in which the interfamilial relationships are fully resolved. We show Stephanellidae is the sister taxon of all other phylactolaemates and confirm that Lophopodidae represents the second offshoot within the phylactolaemate tree. Plumatella fruticosa clearly falls outside Plumatellidae as previous investigations have suggested, and instead clusters with Pectinatellidae and Cristatellidae as the sister taxon of Fredericellidae. Our results demonstrate that cryptic speciation is very likely in F. sultana and in two species of Plumatella (P. repens and P. casmiana). Divergence time estimates show that Phylactolaemata appeared at the end of the Ediacaran and started to diverge in the Silurian, although confidence intervals were large for most nodes. The radiation of most extant phylactolaemate families occurred mainly in the Palaeogene and Neogene highlighting post-extinction diversification.


Asunto(s)
Briozoos , Ecosistema , Humanos , Animales , Filogenia , Teorema de Bayes , Briozoos/genética , Agua Dulce
3.
Org Divers Evol ; 22(4): 893-913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398106

RESUMEN

The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves. Supplementary information: The online version contains supplementary material available at 10.1007/s13127-022-00569-5.

4.
RNA ; 24(4): 597-608, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29246928

RESUMEN

MicroRNAs (miRNAs) are highly conserved ∼22 nt small noncoding RNAs that bind partially complementary sequences in target transcripts. MicroRNAs regulate both translation and transcript stability, and play important roles in development, cellular homeostasis, and disease. There are limited approaches available to agnostically identify microRNA targets transcriptome-wide, and methods using miRNA mimics, which in principle identify direct miRNA:transcript pairs, have low sensitivity and specificity. Here, we describe a novel method to identify microRNA targets using miR-29b mimics containing 3-cyanovinylcarbazole (CNVK), a photolabile nucleoside analog. We demonstrate that biotin-tagged, CNVK-containing miR-29b (CNVK-miR-29b) mimics are nontoxic in cell culture, associate with endogenous mammalian Argonaute2, are sensitive for known targets and recapitulate endogenous transcript destabilization. Partnering CNVK-miR-29b with ultra-low-input RNA sequencing, we recover ∼40% of known miR-29b targets and find conservation of the focal adhesion and apoptotic target pathways in mouse and human. We also identify hundreds of novel targets, including NRAS, HOXA10, and KLF11, with a validation rate of 71% for a subset of 73 novel target transcripts interrogated using a high-throughput luciferase assay. Consistent with previous reports, we show that both endogenous miR-29b and CNVK-miR-29b are trafficked to the nucleus, but find no evidence of nuclear-specific miR-29b transcript binding. This may indicate that miR-29b nuclear sequestration is a regulatory mechanism in itself. We suggest that CNVK-containing small RNA mimics may find applicability in other experimental models.


Asunto(s)
Carbazoles/química , MicroARNs/metabolismo , Nitrilos/química , ARN sin Sentido/genética , Compuestos de Vinilo/química , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis , Proteínas Argonautas/química , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Adhesiones Focales/metabolismo , GTP Fosfohidrolasas/química , Proteínas Homeobox A10 , Proteínas de Homeodominio/química , Humanos , Proteínas de la Membrana/química , Ratones , MicroARNs/química , Proteínas Represoras/química
5.
Dev Biol ; 427(2): 193-202, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27880868

RESUMEN

Animals rely on genomic regulatory systems to direct the dynamic spatiotemporal and cell-type specific gene expression that is essential for the development and maintenance of a multicellular lifestyle. Although it is widely appreciated that these systems ultimately evolved from genomic regulatory mechanisms present in single-celled stem metazoans, it remains unclear how this occurred. Here, we focus on the contribution of the non-coding portion of the genome to the evolution of animal gene regulation, specifically on recent insights from non-bilaterian metazoan lineages, and unicellular and colonial holozoan sister taxa. High-throughput next-generation sequencing, largely in bilaterian model species, has led to the discovery of tens of thousands of non-coding RNA genes (ncRNAs), including short, long and circular forms, and uncovered the central roles they play in development. Based on the analysis of non-bilaterian metazoan, unicellular holozoan and fungal genomes, the evolution of some ncRNAs, such as Piwi-interacting RNAs, correlates with the emergence of metazoan multicellularity, while others, including microRNAs, long non-coding RNAs and circular RNAs, appear to be more ancient. Analysis of non-coding regulatory DNA and histone post-translational modifications have revealed that some cis-regulatory mechanisms, such as those associated with proximal promoters, are present in non-animal holozoans, while others appear to be metazoan innovations, most notably distal enhancers. In contrast, the cohesin-CTCF system for regulating higher-order chromatin structure and enhancer-promoter long-range interactions appears to be restricted to bilaterians. Taken together, most bilaterian non-coding regulatory mechanisms appear to have originated before the divergence of crown metazoans. However, differential expansion of non-coding RNA and cis-regulatory DNA repertoires in bilaterians may account for their increased regulatory and morphological complexity relative to non-bilaterians.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica , Genoma , Animales , Humanos , Secuencias Reguladoras de Ácidos Nucleicos
6.
BMC Evol Biol ; 18(1): 160, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382896

RESUMEN

BACKGROUND: Micro RNAs (miRNAs) and piwi interacting RNAs (piRNAs), along with the more ancient eukaryotic endogenous small interfering RNAs (endo-siRNAs) constitute the principal components of the RNA interference (RNAi) repertoire of most animals. RNAi in non-bilaterians - sponges, ctenophores, placozoans and cnidarians - appears to be more diverse than that of bilaterians, and includes structurally variable miRNAs in sponges, an enormous number of piRNAs in cnidarians and the absence of miRNAs in ctenophores and placozoans. RESULTS: Here we identify thousands of endo-siRNAs and piRNAs from the sponge Amphimedon queenslandica, the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis using a computational approach that clusters mapped small RNA sequences and annotates each cluster based on the read length and relative abundance of the constituent reads. This approach was validated on 11 small RNA libraries in Drosophila melanogaster, demonstrating the successful annotation of RNAi-associated loci with properties consistent with previous reports. In the non-bilaterians we uncover seven new miRNAs from Amphimedon and four from Nematostella as well as sub-populations of candidate cis-natural antisense transcript (cis-NAT) endo-siRNAs. We confirmed the absence of miRNAs in Mnemiopsis but detected an abundance of endo-siRNAs in this ctenophore. Analysis of putative piRNA structure suggests that conserved localised secondary structures in primary transcripts may be important for the production of mature piRNAs in Amphimedon and Nematostella, as is also the case for endo-siRNAs. CONCLUSION: Together, these findings suggest that the last common ancestor of extant animals did not have the entrained RNAi system that typifies bilaterians. Instead it appears that bilaterians, cnidarians, ctenophores and sponges express unique repertoires and combinations of miRNAs, piRNAs and endo-siRNAs.


Asunto(s)
Evolución Biológica , Interferencia de ARN , Animales , Ctenóforos/genética , Drosophila/genética , Biblioteca de Genes , Genoma , MicroARNs/genética , Anotación de Secuencia Molecular , ARN Interferente Pequeño/metabolismo , Anémonas de Mar/genética
7.
Mol Biol Evol ; 32(9): 2367-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25976353

RESUMEN

Long noncoding RNAs (lncRNAs) are important developmental regulators in bilaterian animals. A correlation has been claimed between the lncRNA repertoire expansion and morphological complexity in vertebrate evolution. However, this claim has not been tested by examining morphologically simple animals. Here, we undertake a systematic investigation of lncRNAs in the demosponge Amphimedon queenslandica, a morphologically simple, early-branching metazoan. We combine RNA-Seq data across multiple developmental stages of Amphimedon with a filtering pipeline to conservatively predict 2,935 lncRNAs. These include intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, long intergenic nonprotein coding RNAs, and precursors for small RNAs. Sponge lncRNAs are remarkably similar to their bilaterian counterparts in being relatively short with few exons and having low primary sequence conservation relative to protein-coding genes. As in bilaterians, a majority of sponge lncRNAs exhibit typical hallmarks of regulatory molecules, including high temporal specificity and dynamic developmental expression. Specific lncRNA expression profiles correlate tightly with conserved protein-coding genes likely involved in a range of developmental and physiological processes, such as the Wnt signaling pathway. Although the majority of Amphimedon lncRNAs appears to be taxonomically restricted with no identifiable orthologs, we find a few cases of conservation between demosponges in lncRNAs that are antisense to coding sequences. Based on the high similarity in the structure, organization, and dynamic expression of sponge lncRNAs to their bilaterian counterparts, we propose that these noncoding RNAs are an ancient feature of the metazoan genome. These results are consistent with lncRNAs regulating the development of animals, regardless of their level of morphological complexity.


Asunto(s)
Poríferos/genética , ARN Largo no Codificante/genética , Animales , Secuencia de Bases , Secuencia Conservada , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Especiación Genética , Poríferos/metabolismo , ARN Largo no Codificante/metabolismo , Transcriptoma
8.
Nature ; 466(7307): 720-6, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20686567

RESUMEN

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Asunto(s)
Evolución Molecular , Genoma/genética , Poríferos/genética , Animales , Apoptosis/genética , Adhesión Celular/genética , Ciclo Celular/genética , Polaridad Celular/genética , Proliferación Celular , Genes/genética , Genómica , Humanos , Inmunidad Innata/genética , Modelos Biológicos , Neuronas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/genética , Filogenia , Poríferos/anatomía & histología , Poríferos/citología , Poríferos/inmunología , Análisis de Secuencia de ADN , Transducción de Señal/genética
9.
BMC Genomics ; 16: 387, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25975661

RESUMEN

BACKGROUND: The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. RESULTS: Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3' and 5' untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3' UTRs. CONCLUSIONS: The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular/métodos , Poríferos/crecimiento & desarrollo , Poríferos/genética , Empalme Alternativo , Animales , Secuencia Conservada , Etiquetas de Secuencia Expresada/metabolismo , Genómica , Intrones/genética , Análisis de Secuencia de ARN
10.
Methods Mol Biol ; 2498: 53-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35727540

RESUMEN

As complete genomes become easier to attain, even from previously difficult-to-sequence species, and as genomic resequencing becomes more routine, it is becoming obvious that genomic structural variation is more widespread than originally thought and plays an important role in maintaining genetic variation in populations. Structural variants (SVs) and associated gene presence-absence variation (PAV) can be important players in local adaptation, allowing the maintenance of genetic variation and taking part in other evolutionarily relevant phenomena. While recent studies have highlighted the importance of structural variation in Mollusca, the prevalence of this phenomenon in the broader context of marine organisms remains to be fully investigated.Here, we describe a straightforward and broadly applicable method for the identification of SVs in fully assembled diploid genomes, leveraging the same reads used for assembly. We also explain a gene PAV analysis protocol, which could be broadly applied to any species with a fully sequenced reference genome available. Although the strength of these approaches have been tested and proven in marine invertebrates, which tend to have high levels of heterozygosity, possibly due to their lifestyle traits, they are also applicable to other species across the tree of life, providing a ready means to begin investigations into this potentially widespread phenomena.


Asunto(s)
Organismos Acuáticos , Variación Estructural del Genoma , Organismos Acuáticos/genética , Variación Genética , Genoma , Genómica/métodos , Análisis de Secuencia de ADN
11.
Front Cell Dev Biol ; 10: 894434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774230

RESUMEN

Intercellular lumen formation is a crucial aspect of animal development and physiology that involves a complex interplay between the molecular and physical properties of the constituent cells. Embryos of the invasive freshwater mussel Dreissena rostriformis are ideal models for studying this process due to the large intercellular cavities that readily form during blastomere cleavage. Using this system, we show that recruitment of the transmembrane water channel protein aquaporin exclusively to the midbody of intercellular cytokinetic bridges is critical for lumenogenesis. The positioning of aquaporin-positive midbodies thereby influences the direction of cleavage cavity expansion. Notably, disrupting cytokinetic bridge microtubules impairs not only lumenogenesis but also cellular osmoregulation. Our findings reveal a simple mechanism that provides tight spatial and temporal control over the formation of luminal structures and likely plays an important role in water homeostasis during early cleavage stages of a freshwater invertebrate species.

12.
Sci Rep ; 11(1): 18030, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504115

RESUMEN

The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.


Asunto(s)
Pleiotropía Genética , Proteínas de Homeodominio/genética , Mesodermo/metabolismo , Cadenas Pesadas de Miosina/genética , Poliplacóforos/genética , Factor de Transcripción HES-1/genética , Animales , Anélidos/clasificación , Anélidos/genética , Evolución Biológica , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Morfogénesis/genética , Cadenas Pesadas de Miosina/metabolismo , Filogenia , Poliplacóforos/clasificación , Poliplacóforos/crecimiento & desarrollo , Poliplacóforos/metabolismo , Factor de Transcripción HES-1/metabolismo , Urocordados/clasificación , Urocordados/genética
13.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200153, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33813894

RESUMEN

The advent of complete genomic sequencing has opened a window into genomic phenomena obscured by fragmented assemblies. A good example of these is the existence of hemizygous regions of autosomal chromosomes, which can result in marked differences in gene content between individuals within species. While these hemizygous regions, and presence/absence variation of genes that can result, are well known in plants, firm evidence has only recently emerged for their existence in metazoans. Here, we use recently published, complete genomes from wild-caught molluscs to investigate the prevalence of hemizygosity across a well-known and ecologically important clade. We show that hemizygous regions are widespread in mollusc genomes, not clustered in individual chromosomes, and often contain genes linked to transposition, DNA repair and stress response. With targeted investigations of HSP70-12 and C1qDC, we also show how individual gene families are distributed within pan-genomes. This work suggests that extensive pan-genomes are widespread across the conchiferan Mollusca, and represent useful tools for genomic evolution, allowing the maintenance of additional genetic diversity within the population. As genomic sequencing and re-sequencing becomes more routine, the prevalence of hemizygosity, and its impact on selection and adaptation, are key targets for research across the tree of life. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Asunto(s)
Variación Genética , Genoma , Moluscos/genética , Adaptación Biológica , Animales , Evolución Molecular , Selección Genética
14.
Curr Biol ; 31(1): 207-213.e4, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125864

RESUMEN

Ecdysis or molting evolved ∼535 mya in Ecdysozoa, the most diverse and species-rich animal superphylum.1 A cascade of ecdysis-related neuropeptides (ERNs) controls the innate behavioral programs required for cuticle shedding in some ecdysozoan lineages (e.g., arthropods)2-12 but is lacking in others (e.g., nematodes).13 We recently reported on the surprisingly ancient bilaterian origin of key ERNs, such as eclosion hormone (EH), crustacean cardioactive neuropeptide (CCAP), myoinhibitory peptide (MIP), bursicon alpha (Bursα), and bursicon beta (Bursß).13,14 Thus, ERNs far predate the emergence of ecdysis, but the question as to their ancestral functions remains unresolved. Here, we compare the ERN toolkits and temporal expression profiles of six ecdysozoans (tardigrades, crustaceans, and insects), eight lophotrochozoans (planarians, annelids, and mollusks), and five deuterostomes (crinoids, sea urchins, and hemichordates). Our results show that the major, coordinated upregulation of ERNs always coincides with a transition between key life history stages, such as hatching in direct developers and metamorphosis in indirect developers. This implies that ERNs already played an ancestral role in the switch from embryonic or larval ontogeny to juvenile maturation in the last common ancestor of Nephrozoa. Consequently, the transcriptional signature of invertebrate life cycle transitions presented here was already in place in the Precambrian and was only secondarily co-opted into regulating the molting process at the dawn of Ecdysozoa.


Asunto(s)
Evolución Biológica , Estadios del Ciclo de Vida/fisiología , Muda/fisiología , Neuropéptidos/metabolismo , Animales
15.
Evolution ; 75(9): 2237-2250, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34268730

RESUMEN

Ecdysis-related neuropeptides (ERNs), including eclosion hormone, crustacean cardioactive peptide, myoinhibitory peptide, bursicon alpha, and bursicon beta regulate molting in insects and crustaceans. Recent evidence further revealed that ERNs likely play an ancestral role in invertebrate life cycle transitions, but their tempo-spatial expression patterns have not been investigated outside Arthropoda. Using RNA-seq and in situ hybridization, we show that ERNs are broadly expressed in the developing nervous system of a mollusk, the polyplacophoran Acanthochitona fascicularis. While some ERN-expressing neurons persist from larval to juvenile stages, others are only present during settlement and metamorphosis. These transient neurons belong to the "ampullary system," a polyplacophoran-specific larval sensory structure. Surprisingly, however, ERN expression is absent from the apical organ, another larval sensory structure that degenerates before settlement is completed in A. fascicularis. Our findings thus support a role of ERNs in A. fascicularis metamorphosis but contradict the common notion that the apical organ-like structures shared by various aquatic invertebrates (i.e., cnidarians, annelids, mollusks, echinoderms) are of general importance for this process.


Asunto(s)
Muda , Neuropéptidos , Animales , Larva , Estadios del Ciclo de Vida , Metamorfosis Biológica , Neuropéptidos/genética
16.
Sci Rep ; 11(1): 3575, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574385

RESUMEN

Hox genes are key developmental regulators that are involved in establishing morphological features during animal ontogeny. They are commonly expressed along the anterior-posterior axis in a staggered, or collinear, fashion. In mollusks, the repertoire of body plans is widely diverse and current data suggest their involvement during development of landmark morphological traits in Conchifera, one of the two major lineages that comprises those taxa that originated from a uni-shelled ancestor (Monoplacophora, Gastropoda, Cephalopoda, Scaphopoda, Bivalvia). For most clades, and bivalves in particular, data on Hox gene expression throughout ontogeny are scarce. We thus investigated Hox expression during development of the quagga mussel, Dreissena rostriformis, to elucidate to which degree they might contribute to specific phenotypic traits as in other conchiferans. The Hox/ParaHox complement of Mollusca typically comprises 14 genes, 13 of which are present in bivalve genomes including Dreissena. We describe here expression of 9 Hox genes and the ParaHox gene Xlox during Dreissena development. Hox expression in Dreissena is first detected in the gastrula stage with widely overlapping expression domains of most genes. In the trochophore stage, Hox gene expression shifts towards more compact, largely mesodermal domains. Only few of these domains can be assigned to specific developing morphological structures such as Hox1 in the shell field and Xlox in the hindgut. We did not find traces of spatial or temporal staggered expression of Hox genes in Dreissena. Our data support the notion that Hox gene expression has been coopted independently, and to varying degrees, into lineage-specific structures in the respective conchiferan clades. The non-collinear mode of Hox expression in Dreissena might be a result of the low degree of body plan regionalization along the bivalve anterior-posterior axis as exemplified by the lack of key morphological traits such as a distinct head, cephalic tentacles, radula apparatus, and a simplified central nervous system.


Asunto(s)
Bivalvos/genética , Evolución Molecular , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Animales , Bivalvos/fisiología , Tipificación del Cuerpo/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Moluscos/clasificación , Moluscos/genética , Moluscos/fisiología , Morfogénesis/genética , Filogenia
17.
Elife ; 82019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31266593

RESUMEN

Ecdysis (moulting) is the defining character of Ecdysoza (arthropods, nematodes and related phyla). Despite superficial similarities, the signalling cascade underlying moulting differs between Panarthropoda and the remaining ecdysozoans. Here, we reconstruct the evolution of major components of the ecdysis pathway. Its key elements evolved much earlier than previously thought and are present in non-moulting lophotrochozoans and deuterostomes. Eclosion hormone (EH) and bursicon originated prior to the cnidarian-bilaterian split, whereas ecdysis-triggering hormone (ETH) and crustacean cardioactive peptide (CCAP) evolved in the bilaterian last common ancestor (LCA). Identification of EH, CCAP and bursicon in Onychophora and EH, ETH and CCAP in Tardigrada suggests that the pathway was present in the panarthropod LCA. Trunk, an ancient extracellular signalling molecule and a well-established paralog of the insect peptide prothoracicotropic hormone (PTTH), is present in the non-bilaterian ctenophore Mnemiopsis leidyi. This constitutes the first case of a ctenophore signalling peptide with homology to a neuropeptide.


Asunto(s)
Artrópodos/crecimiento & desarrollo , Artrópodos/genética , Evolución Biológica , Muda , Transducción de Señal , Animales
18.
DNA Res ; 26(5): 411-422, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504356

RESUMEN

Freshwater dreissenid mussels evolved from marine ancestors during the Miocene ∼30 million years ago and today include some of the most successful and destructive invasive species of freshwater environments. Here, we sequenced the genome of the quagga mussel Dreissena rostriformis to identify adaptations involved in embryonic osmoregulation. We provide evidence that a lophotrochozoan-specific aquaporin water channel, a vacuolar ATPase subunit and a sodium/hydrogen exchanger are involved in osmoregulation throughout early cleavage, during which time large intercellular fluid-filled 'cleavage cavities' repeatedly form, coalesce and collapse, expelling excess water to the exterior. Independent expansions of aquaporins coinciding with at least five freshwater colonization events confirm their role in freshwater adaptation. Repeated aquaporin expansions and the evolution of membrane-bound fluid-filled osmoregulatory structures in diverse freshwater taxa point to a fundamental principle guiding the evolution of freshwater tolerance and provide a framework for future species control efforts.


Asunto(s)
Adaptación Fisiológica , Dreissena/genética , Agua Dulce , Genoma , Animales , Masculino , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA