Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636660

RESUMEN

Unsaturated fatty acid ketones with αß,γδ conjugation are susceptible to Michael addition of thiols, with unresolved issues on the site of adduction and precise structures of the conjugates. Herein we reacted 13-keto-octadecadienoic acid (13-oxo-ODE or 13-KODE) with glutathione (GSH), N-acetyl-cysteine, and ß-mercaptoethanol and identified the adducts. HPLC-UV analyses indicated none of the products exhibit a conjugated enone UV chromophore, a result that conflicts with the literature and is relevant to the mass spectral interpretation of 1,4 versus 1,6 thiol adduction. Aided by the development of an HPLC solvent system that separates the GSH diastereomers and thus avoids overlap of signals in proton NMR experiments, we established the two major conjugates are formed by 1,6 addition of GSH at the 9-carbon of 13-oxo-ODE with the remaining double bond α to the thiol in the 10,11 position. N-acetyl cysteine reacts similarly, while ß-mercaptoethanol gives equal amounts of 1,4 and 1,6 addition products. Equine glutathione transferase catalyzed 1,6 addition of GSH to the two major diastereomers in 44:56 proportions. LC-MS in positive ion mode gives a product ion interpreted before as evidence of 1,4-thiol adduction, whereas here we find this ion using the authentic 1,6 adduct. LC-MS with negative ion APCI gave a fragment selective for 1,4 adduction. These results clarify the structures of thiol conjugates of a prototypical unsaturated keto-fatty acid and have relevance to the application of LC-MS for the structural analysis of keto-fatty acid glutathione conjugation.


Asunto(s)
Glutatión , Compuestos de Sulfhidrilo , Glutatión/química , Glutatión/metabolismo , Compuestos de Sulfhidrilo/química , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Mercaptoetanol/química , Cromatografía Líquida con Espectrometría de Masas
2.
J Biol Chem ; 299(6): 104739, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086788

RESUMEN

A key requirement in forming the water permeability barrier in the mammalian epidermis is the oxidation of linoleate esterified in a skin-specific acylceramide by the sequential actions of 12R-lipoxygenase, epidermal lipoxygenase-3, and the epoxyalcohol dehydrogenase SDR9C7 (short-chain dehydrogenase-reductase family 7 member 9). By mechanisms that remain unclear, this oxidation pathway promotes the covalent binding of ceramides to protein, forming a critical structure of the epidermal barrier, the corneocyte lipid envelope. Here, we detected, in porcine, mouse, and human epidermis, two novel fatty acid derivatives formed by KOH treatment from precursors covalently bound to protein: a "polar" lipid chromatographing on normal-phase HPLC just before omega-hydroxy ceramide and a "less polar" lipid nearer the solvent front. Approximately 100 µg of the novel lipids were isolated from porcine epidermis, and the structures were established by UV-spectroscopy, LC-MS, GC-MS, and NMR. Each is a C18 fatty acid and hydroxy-cyclohexenone with the ring on carbons C9-C14 in the polar lipid and C8-C13 in the less polar lipid. Overnight culture of [14C]linoleic acid with whole mouse skin ex vivo led to recovery of the 14C-labeled hydroxy-cyclohexenones. We deduce they are formed from covalently bound precursors during the KOH treatment used to release esterified lipids. KOH-induced intramolecular aldol reactions from a common precursor can account for their formation. Discovery of these hydroxy-cyclohexenones presents an opportunity for a reverse pathway analysis, namely to work back from these structures to identify their covalently bound precursors and relationship to the linoleate oxidation pathway.


Asunto(s)
Ceramidas , Epidermis , Ácido Linoleico , Lipooxigenasa , Animales , Humanos , Ratones , Ceramidas/metabolismo , Epidermis/metabolismo , Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos , Porcinos
3.
J Immunol ; 209(4): 796-805, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35896340

RESUMEN

Colonization by Helicobacter pylori is associated with gastric diseases, ranging from superficial gastritis to more severe pathologies, including intestinal metaplasia and adenocarcinoma. The interplay of the host response and the pathogen affect the outcome of disease. One major component of the mucosal response to H. pylori is the activation of a strong but inefficient immune response that fails to control the infection and frequently causes tissue damage. We have shown that polyamines can regulate H. pylori-induced inflammation. Chemical inhibition of ornithine decarboxylase (ODC), which generates the polyamine putrescine from l-ornithine, reduces gastritis in mice and adenocarcinoma incidence in gerbils infected with H. pylori However, we have also demonstrated that Odc deletion in myeloid cells enhances M1 macrophage activation and gastritis. Here we used a genetic approach to assess the specific role of gastric epithelial ODC during H. pylori infection. Specific deletion of the gene encoding for ODC in gastric epithelial cells reduces gastritis, attenuates epithelial proliferation, alters the metabolome, and downregulates the expression of immune mediators induced by H. pylori Inhibition of ODC activity or ODC knockdown in human gastric epithelial cells dampens H. pylori-induced NF-κB activation, CXCL8 mRNA expression, and IL-8 production. Chronic inflammation is a major risk factor for the progression to more severe pathologies associated with H. pylori infection, and we now show that epithelial ODC plays an important role in mediating this inflammatory response.


Asunto(s)
Adenocarcinoma , Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Adenocarcinoma/metabolismo , Animales , Células Epiteliales/metabolismo , Mucosa Gástrica/patología , Helicobacter pylori/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo
4.
Nutr Metab Cardiovasc Dis ; 34(7): 1712-1720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658223

RESUMEN

BACKGROUND AND AIMS: The cardiometabolic disease-associated metabolite, alpha-aminoadipic acid (2-AAA) is formed from the breakdown of the essential dietary amino acid lysine. However, it was not known whether elevated plasma levels of 2-AAA are related to dietary nutrient intake. We aimed to determine whether diet is a determinant of circulating 2-AAA in healthy individuals, and whether 2-AAA is altered in response to dietary modification. METHODS AND RESULTS: We investigated the association between 2-AAA and dietary nutrient intake in a cross-sectional study of healthy individuals (N = 254). We then performed a randomized cross-over dietary intervention trial to investigate the effect of lysine supplementation (1 week) on 2-AAA in healthy individuals (N = 40). We further assessed the effect of a vegetarian diet on 2-AAA in a short-term (4-day) dietary intervention trial in healthy omnivorous women (N = 35). We found that self-reported dietary intake of animal products, including meat, poultry, and seafood, was associated with higher plasma 2-AAA cross-sectionally (P < 0.0001). Supplementary dietary lysine (5g/day) caused no significant increase in plasma 2-AAA; however, plasma 2-AAA was altered by general dietary modification. Further, plasma 2-AAA was significantly reduced by a short-term vegetarian diet (P = 0.003). CONCLUSION: We identified associations between plasma 2-AAA and consumption of animal products, which were validated in a vegetarian dietary intervention trial, but not in a trial designed to specifically increase the 2-AAA amino acid precursor lysine. Further studies are warranted to investigate whether implementation of a vegetarian diet improves cardiometabolic risk in individuals with elevated 2-AAA.


Asunto(s)
Ácido 2-Aminoadípico , Biomarcadores , Estudios Cruzados , Dieta Vegetariana , Suplementos Dietéticos , Lisina , Carne , Humanos , Femenino , Masculino , Estudios Transversales , Adulto , Ácido 2-Aminoadípico/sangre , Lisina/sangre , Lisina/administración & dosificación , Persona de Mediana Edad , Biomarcadores/sangre , Alimentos Marinos , Adulto Joven , Valor Nutritivo , Factores de Tiempo , Aves de Corral
5.
J Lipid Res ; 63(1): 100159, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863863

RESUMEN

In light of the importance of epoxyeicosatrienoic acids (EETs) in mammalian pathophysiology, a nonenzymatic route that might form these monoepoxides in cells is of significant interest. In the late 1970s, a simple system of arranging linoleic acid molecules on a monolayer on silica was devised and shown to yield monoepoxides as the main autoxidation products. Here, we investigated this system with arachidonic acid and characterized the primary products. By the early stages of autoxidation (∼10% conversion of arachidonic acid), the major products detected by LC-MS and HPLC-UV were the 14,15-, 11,12-, and 8,9-EETs, with the 5,6-EET mainly represented as the 5-δ-lactone-6-hydroxyeicosatrienoate as established by 1H-NMR. The EETs were mainly the cis epoxides as expected, with minor trans configuration EETs among the products. 1H-NMR analysis in four deuterated solvents helped clarify the epoxide configurations. EET formation in monolayers involves intermolecular reaction with a fatty acid peroxyl radical, producing the EET and leaving an incipient and more reactive alkoxyl radical, which in turn gives rise to epoxy-hydro(pero)xides and other polar products. The monolayer alignment of fatty acid molecules resembles the arrangements of fatty acids in cell membranes and, under conditions of lipid peroxidation, this intermolecular mechanism might contribute to EET formation in biological membranes.


Asunto(s)
Ácido Araquidónico
7.
J Biol Chem ; 291(28): 14540-54, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27151221

RESUMEN

Creation of an intact skin water barrier, a prerequisite for life on dry land, requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate, which is esterified to the ω-hydroxyl of an epidermis-specific ceramide. Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for covalent binding to protein, thus forming the corneocyte lipid envelope, a key component of the epidermal barrier. Herein, we report the transformations of esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol synthesis catalyzed by the consecutive actions of 12R-LOX and epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy derivative, formed with a specificity that implicates participation of an epoxide hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses, we identify and quantify specifically 9R,10S,13R-trihydroxy-11E-octadecenoate as the single major triol esterified in porcine epidermis and the same isomer with lesser amounts of its 10R diastereomer in human epidermis. The 9R,10S,13R-triol is formed by SN2 hydrolysis of the 9R,10R-epoxy-13R-hydroxy-octadecenoate product of the LOX enzymes, a reaction specificity characteristic of epoxide hydrolase. The high polarity of triol over the primary linoleate products enhances the concept that the oxidations disrupt corneocyte membrane lipids, promoting release of free ω-hydroxyceramide for covalent binding to protein and sealing of the waterproof barrier.


Asunto(s)
Epóxido Hidrolasas/metabolismo , Ácido Linoleico/química , Animales , Epidermis/metabolismo , Humanos , Ácidos Linoleicos/metabolismo , Lipooxigenasa/metabolismo , Porcinos
8.
Circulation ; 133(20): 1936-44, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27006481

RESUMEN

BACKGROUND: The mechanisms of right ventricular (RV) failure in pulmonary arterial hypertension (PAH) are poorly understood. Abnormalities in fatty acid (FA) metabolism have been described in experimental models of PAH, but systemic and myocardial FA metabolism has not been studied in human PAH. METHODS AND RESULTS: We used human blood, RV tissue, and noninvasive imaging to characterize multiple steps in the FA metabolic pathway in PAH subjects and controls. Circulating free FAs and long-chain acylcarnitines were elevated in PAH patients versus controls. Human RV long-chain FAs were increased and long-chain acylcarnitines were markedly reduced in PAH versus controls. With the use of proton magnetic resonance spectroscopy, in vivo myocardial triglyceride content was elevated in human PAH versus controls (1.4±1.3% triglyceride versus 0.22±0.11% triglyceride, P=0.02). Ceramide, a mediator of lipotoxicity, was increased in PAH RVs versus controls. Using an animal model of heritable PAH, we demonstrated reduced FA oxidation via failure of palmitoylcarnitine to stimulate oxygen consumption in the PAH RV. CONCLUSIONS: Abnormalities in FA metabolism can be detected in the blood and myocardium in human PAH and are associated with in vivo cardiac steatosis and lipotoxicity. Murine data suggest that lipotoxicity may arise from reduction in FA oxidation.


Asunto(s)
Ácidos Grasos/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Triglicéridos/metabolismo , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología , Animales , Ceramidas/metabolismo , Estudios de Cohortes , Humanos , Hipertensión Pulmonar/epidemiología , Ratones , Ratones Transgénicos , Estudios Prospectivos , Disfunción Ventricular Derecha/epidemiología
9.
Am J Physiol Renal Physiol ; 310(8): F705-F716, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26661656

RESUMEN

No therapies have been shown to accelerate recovery or prevent fibrosis after acute kidney injury (AKI). In part, this is because most therapeutic candidates have to be given at the time of injury and the diagnosis of AKI is usually made too late for drugs to be efficacious. Strategies to enhance post-AKI repair represent an attractive approach to address this. Using a phenotypic screen in zebrafish, we identified 4-(phenylthio)butanoic acid (PTBA), which promotes proliferation of embryonic kidney progenitor cells (EKPCs), and the PTBA methyl ester UPHD25, which also increases postinjury repair in ischemia-reperfusion and aristolochic acid-induced AKI in mice. In these studies, a new panel of PTBA analogs was evaluated. Initial screening was performed in zebrafish EKPC assays followed by survival assays in a gentamicin-induced AKI larvae zebrafish model. Using this approach, we identified UPHD186, which in contrast to UPHD25, accelerates recovery and reduces fibrosis when administered several days after ischemia-reperfusion AKI and reduces fibrosis after unilateral ureteric obstruction in mice. UPHD25 and 186 are efficiently metabolized to the active analog PTBA in liver and kidney microsome assays, indicating both compounds may act as PTBA prodrugs in vivo. UPHD186 persists longer in the circulation than UPHD25, suggesting that sustained levels of UPHD186 may increase efficacy by acting as a reservoir for renal metabolism to PTBA. These findings validate use of zebrafish EKPC and AKI assays as a drug discovery strategy for molecules that reduce fibrosis in multiple AKI models and can be administered days after initiation of injury.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Butiratos/uso terapéutico , Riñón/efectos de los fármacos , Sulfuros/uso terapéutico , Lesión Renal Aguda/patología , Animales , Butiratos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Riñón/patología , Masculino , Ratones , Sulfuros/farmacología , Pez Cebra
10.
J Infect Dis ; 212(9): 1439-48, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25883390

RESUMEN

Sterol 14α-demethylases (CYP51) are the enzymes essential for sterol biosynthesis. They serve as clinical targets for antifungal azoles and are considered as targets for treatment of human Trypanosomatidae infections. Recently, we have shown that VNI, a potent and selective inhibitor of trypanosomal CYP51 that we identified and structurally characterized in complex with the enzyme, can cure the acute and chronic forms of Chagas disease. The purpose of this work was to apply the CYP51 structure/function for further development of the VNI scaffold. As anticipated, VFV (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide, the derivative designed to fill the deepest portion of the CYP51 substrate-binding cavity, reveals a broader antiprotozoan spectrum of action. It has stronger antiparasitic activity in cellular experiments, cures the experimental Chagas disease with 100% efficacy, and suppresses visceral leishmaniasis by 89% (vs 60% for VNI). Oral bioavailability, low off-target activity, favorable pharmacokinetics and tissue distribution characterize VFV as a promising new drug candidate.


Asunto(s)
Antiprotozoarios/farmacología , Benzamidas/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/química , Leishmaniasis Visceral/tratamiento farmacológico , Oxadiazoles/farmacología , Animales , Antiprotozoarios/farmacocinética , Benzamidas/farmacocinética , Biotransformación , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Modelos Animales de Enfermedad , Femenino , Humanos , Imidazoles/farmacología , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Oxadiazoles/farmacocinética , Ratas , Relación Estructura-Actividad , Distribución Tisular , Trypanosoma cruzi/efectos de los fármacos
11.
Methods ; 64(1): 59-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23876937

RESUMEN

DNA glycosylases excise a broad spectrum of alkylated, oxidized, and deaminated nucleobases from DNA as the initial step in base excision repair. Substrate specificity and base excision activity are typically characterized by monitoring the release of modified nucleobases either from a genomic DNA substrate that has been treated with a modifying agent or from a synthetic oligonucleotide containing a defined lesion of interest. Detection of nucleobases from genomic DNA has traditionally involved HPLC separation and scintillation detection of radiolabeled nucleobases, which in the case of alkylation adducts can be laborious and costly. Here, we describe a mass spectrometry method to simultaneously detect and quantify multiple alkylpurine adducts released from genomic DNA that has been treated with N-methyl-N-nitrosourea (MNU). We illustrate the utility of this method by monitoring the excision of N3-methyladenine (3 mA) and N7-methylguanine (7 mG) by a panel of previously characterized prokaryotic and eukaryotic alkylpurine DNA glycosylases, enabling a comparison of substrate specificity and enzyme activity by various methods. Detailed protocols for these methods, along with preparation of genomic and oligonucleotide alkyl-DNA substrates, are also described.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Reparación del ADN , ADN/química , Espectrometría de Masas en Tándem/métodos , Alquilación , Bacillus cereus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Aductos de ADN/química , Daño del ADN , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Salmonella typhi/genética
12.
Cancer Med ; 13(3): e6812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38239047

RESUMEN

BACKGROUND: It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects. METHODS: We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods. RESULTS: Within 24 h of adding the small concentration of 1X of NSPS (~7 µM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone. CONCLUSION: Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias Pulmonares , Humanos , Masculino , Animales , Ratones , Preparaciones Farmacéuticas , Fluorodesoxiglucosa F18 , Inmunoterapia , Alcanosulfonatos , Glucosa , Hidroxiapatitas , Microambiente Tumoral
13.
Mol Microbiol ; 86(6): 1376-92, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23043465

RESUMEN

Staphylococcus aureus is a pathogen that infects multiple anatomical sites leading to a diverse array of diseases. Although vertebrates can restrict the growth of invading pathogens by sequestering iron within haem, S. aureus surmounts this challenge by employing high-affinity haem uptake systems. However, the presence of excess haem is highly toxic, necessitating tight regulation of haem levels. To overcome haem stress, S. aureus expresses the detoxification system HrtAB. In this work, a transposon screen was performed in the background of a haem-susceptible, HrtAB-deficient S. aureus strain to identify the substrate transported by this putative pump and the source of haem toxicity. While a recent report indicates that HrtAB exports haem itself, the haem-resistant mutants uncovered by the transposon selection enabled us to elucidate the cellular factors contributing to haem toxicity. All mutants identified in this screen inactivated the menaquinone (MK) biosynthesis pathway. Deletion of the final steps of this pathway revealed that quinone molecules localizing to the cell membrane potentiate haem-associated superoxide production and subsequent oxidative damage. These data suggest a model in which membrane-associated haem and quinone molecules form a redox cycle that continuously generates semiquinones and reduced haem, both of which react with atmospheric oxygen to produce superoxide.


Asunto(s)
Hemo/toxicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Vitamina K 2/metabolismo , Adenosina Trifosfatasas/deficiencia , Vías Biosintéticas/genética , Elementos Transponibles de ADN , Eliminación de Gen , Mutagénesis Insercional , Estrés Oxidativo , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Superóxidos/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-37336389

RESUMEN

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Asunto(s)
Ácidos Araquidónicos , Piel , Piel/metabolismo , Lipooxigenasa/metabolismo , Ácido Linoleico/química , Ácidos Linoleicos/metabolismo , Ácidos Grasos , Ácido Araquidónico
15.
medRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333170

RESUMEN

Plasma levels of the metabolite alpha-aminoadipic acid (2-AAA) have been associated with risk of type 2 diabetes (T2D) and atherosclerosis. However, little is known about the relationship of 2-AAA to other cardiometabolic risk markers in pre-disease states, or in the setting of comorbid disease. We measured circulating 2-AAA using two methods in 1) a sample of 261 healthy individuals (2-AAA Study), and 2) in a sample of 134 persons comprising 110 individuals with treated HIV, with or without T2D, a population at high risk of metabolic disease and cardiovascular events despite suppression of circulating virus, and 24 individuals with T2D without HIV (HATIM Study). We examined associations between plasma 2-AAA and markers of cardiometabolic health within each cohort. We observed differences in 2-AAA by sex and race in both cohorts, with higher levels observed in men compared with women, and in Asian compared with Black or white individuals (P<0.05). There was no significant difference in 2-AAA by HIV status within individuals with T2D in the HATIM Study. We confirmed associations between 2-AAA and dyslipidemia in both cohorts where high 2-AAA associated with low HDL cholesterol (P<0.001) and high triglycerides (P<0.05). As expected, within the cohort of people with HIV, 2-AAA was higher in the setting of T2D compared to pre-diabetes or normoglycemia (P<0.001). 2-AAA was positively associated with body mass index (BMI) in the 2-AAA Study, and with waist circumference and measures of visceral fat volume in HATIM (all P<0.05). Further, 2-AAA associated with increased liver fat in persons with HIV (P<0.001). Our study confirms 2-AAA as a marker of cardiometabolic risk in both healthy individuals and those at high cardiometabolic risk, reveals relationships with adiposity and hepatic steatosis, and highlights important differences by sex and race. Further studies are warranted to establish molecular mechanisms linking 2-AAA to disease in other high-risk populations.

16.
Front Endocrinol (Lausanne) ; 14: 1122391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745703

RESUMEN

Introduction: Plasma levels of the metabolite alpha-aminoadipic acid (2-AAA) have been associated with risk of type 2 diabetes (T2D) and atherosclerosis. However, little is known about the relationship of 2-AAA to other cardiometabolic risk markers in pre-disease states, or in the setting of comorbid disease. Methods: We measured circulating 2-AAA using two methods in 1) a sample of 261 healthy individuals (2-AAA Study), and 2) in a sample of 134 persons comprising 110 individuals with treated HIV, with or without T2D, a population at high risk of metabolic disease and cardiovascular events despite suppression of circulating virus, and 24 individuals with T2D without HIV (HATIM Study). We examined associations between plasma 2-AAA and markers of cardiometabolic health within each cohort. Results and discussion: We observed differences in 2-AAA by sex and race in both cohorts, with higher levels observed in men compared with women, and in Asian compared with Black or white individuals (P<0.05). There was no significant difference in 2-AAA by HIV status within individuals with T2D in the HATIM Study. We confirmed associations between 2-AAA and dyslipidemia in both cohorts, where high 2-AAA associated with low HDL cholesterol (P<0.001) and high triglycerides (P<0.05). As expected, within the cohort of people with HIV, 2-AAA was higher in the setting of T2D compared to pre-diabetes or normoglycemia (P<0.001). 2-AAA was positively associated with body mass index (BMI) in the 2-AAA Study, and with waist circumference and measures of visceral fat volume in HATIM (all P<0.05). Further, 2-AAA associated with increased liver fat in persons with HIV (P<0.001). Our study confirms 2-AAA as a marker of cardiometabolic risk in both healthy individuals and those at high cardiometabolic risk, reveals relationships with adiposity and hepatic steatosis, and highlights important differences by sex and race. Further studies are warranted to establish molecular mechanisms linking 2-AAA to disease in other high-risk populations.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Infecciones por VIH , Masculino , Humanos , Femenino , Diabetes Mellitus Tipo 2/complicaciones , Ácido 2-Aminoadípico , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología
17.
Cell Host Microbe ; 31(10): 1604-1619.e10, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37794592

RESUMEN

The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.


Asunto(s)
Microbiota , Obesidad Infantil , Humanos , Niño , Animales , Ratones , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Antibacterianos , Poliésteres , Ratones Endogámicos C57BL
18.
Biochemistry ; 51(50): 9995-10007, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23186213

RESUMEN

Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine [N,N-dimethylnitrosamine (DMN)], a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ≥8. The KIE was not attenuated in noncompetitive intermolecular experiments with rat liver microsomes {(D)V = 12.5; (D)(V/K) = 10.9 [nomenclature of Northrop, D. B. (1982) Methods Enzymol. 87, 607-625]} but was with purified human P450 2E1 [(D)V = 3.3; (D)(V/K) = 3.7], indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine [N,N-diethylnitrosamine (DEN)], the intrinsic KIE was slightly lower and was not expressed [e.g., (D)(V/K) = 1.2] in noncompetitive intermolecular experiments. The same general pattern of KIEs was also seen in the (D)(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH(3)NH(2), CH(3)CH(2)NH(2), and NO(2)(-)). Experiments with deuterated N-nitroso-N-methyl-N-ethylamine demonstrated that the lower KIEs associated with ethyl versus methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 [Chowdhury, G., et al. (2010) J. Biol. Chem. 285, 8031-8044]. These same features (no lag phase for HCO(2)H formation and a lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has a lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkyl nitrosamine oxidation appears to be shared by a number of P450s.


Asunto(s)
Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Dietilnitrosamina/metabolismo , Dimetilnitrosamina/metabolismo , Animales , Deuterio/metabolismo , Humanos , Cinética , Masculino , Microsomas Hepáticos/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
19.
Am J Ophthalmol ; 235: 154-162, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34587493

RESUMEN

PURPOSE: To determine if plasma levels of six arginine-related and citrulline-related metabolites (arginine, citrulline, asymmetric dimethylarginine [ADMA], ornithine, proline, and argininosuccinate) differ between patients with type 2 diabetes and diabetic retinopathy (DR) and type 2 diabetic controls or between patients with proliferative DR (PDR) and non-proliferative DR (NPDR). DESIGN: Cross-sectional study. METHODS: Adults with type 2 diabetes were recruited from the Vanderbilt Eye Institute. Exclusion criteria included non-diabetic retinal disease. Plasma metabolite levels were quantified in 159 diabetic controls and 156 DR patients (92 NPDR, 64 PDR) using isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Metabolite levels were compared using Wilcoxon Rank Sum test and logistic regressions adjusting for age, sex, hemoglobin A1c, diabetes duration, statin use, and angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker use. A secondary analysis that included creatinine in the regression model was performed for the subset of patients with available creatinine values (135 diabetic controls, 100 DR patients [58 NPDR, 42 PDR]). RESULTS: Multivariable logistic regression analyses determined that arginine (OR = 1.20, [1.06-1.38], P = .0067) and citrulline (OR = 1.53, [1.20-1.98], P = .0025) were significantly elevated in DR patients compared to diabetic controls. While ADMA differed between NPDR and PDR patients in the primary analysis (OR = 1.56, [1.15-2.16], P = .0051), it was not significantly different when adjusting for creatinine (OR = 1.30, [0.90-1.91], P = .15). CONCLUSIONS: Plasma arginine and citrulline were significantly elevated in type 2 diabetic patients with DR compared to diabetic controls. None of the tested metabolites significantly differed between NPDR and PDR patients in the adjusted analysis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Adulto , Arginina , Cromatografía Liquida , Citrulina , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/complicaciones , Humanos , Espectrometría de Masas en Tándem
20.
Cell Rep ; 38(1): 110180, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986344

RESUMEN

The gut microbiota benefits the host by limiting enteric pathogen expansion (colonization resistance), partially via the production of inhibitory metabolites. Propionate, a short-chain fatty acid produced by microbiota members, is proposed to mediate colonization resistance against Salmonella enterica serovar Typhimurium (S. Tm). Here, we show that S. Tm overcomes the inhibitory effects of propionate by using it as a carbon source for anaerobic respiration. We determine that propionate metabolism provides an inflammation-dependent colonization advantage to S. Tm during infection. Such benefit is abolished in the intestinal lumen of Salmonella-infected germ-free mice. Interestingly, S. Tm propionate-mediated intestinal expansion is restored when germ-free mice are monocolonized with Bacteroides thetaiotaomicron (B. theta), a prominent propionate producer in the gut, but not when mice are monocolonized with a propionate-production-deficient B. theta strain. Taken together, our results reveal a strategy used by S. Tm to mitigate colonization resistance by metabolizing microbiota-derived propionate.


Asunto(s)
Anaerobiosis/fisiología , Propionatos/metabolismo , Salmonelosis Animal/patología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Animales , Antibiosis/fisiología , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Femenino , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Nitratos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA