Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 169(2): 326-337.e12, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388414

RESUMEN

Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs.


Asunto(s)
Adenosina/análogos & derivados , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/metabolismo , Humanos , Metilación , Iniciación de la Cadena Peptídica Traduccional , ARN Polimerasa II/metabolismo , TATA Box
2.
Gastroenterology ; 150(4): 982-97.e30, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26627607

RESUMEN

BACKGROUND & AIMS: Vascular endothelial growth factor (VEGF) regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, we investigated the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease. METHODS: We obtained transjugular liver biopsies from patients with hepatitis C virus-associated cirrhosis or liver tissues removed during transplantation; healthy human liver tissue was obtained from a commercial source (control). We also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation, and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis, reverse transcription polymerase chain reaction, polyA tail, 3' rapid amplification of complementary DNA ends, Southern blot, immunoblot, histologic, immunohistochemical, immunofluorescence, and confocal microscopy assays. CPEB was knocked down with small interfering RNAs in H5V endothelial cells, and translation of luciferase reporters constructs was assessed. RESULTS: Activation of CPEB1 promoted alternative nuclear processing within noncoding 3'-untranslated regions of VEGF and CPEB4 messenger RNAs in H5V cells, resulting in deletion of translation repressor elements. The subsequent overexpression of CPEB4 promoted cytoplasmic polyadenylation of VEGF messenger RNA, increasing its translation; the high levels of VEGF produced by these cells led to their formation of tubular structures in Matrigel assays. We observed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension after portal vein ligation. CONCLUSIONS: We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.


Asunto(s)
Hipertensión Portal/metabolismo , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática/metabolismo , Neovascularización Patológica , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 3' , Adulto , Animales , Estudios de Casos y Controles , Línea Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Hipertensión Portal/genética , Hipertensión Portal/patología , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Persona de Mediana Edad , Poliadenilación , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Ratas Sprague-Dawley , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transfección , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/genética
3.
Elife ; 112022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35442882

RESUMEN

Chronic inflammation is a major cause of disease. Inflammation resolution is in part directed by the differential stability of mRNAs encoding pro-inflammatory and anti-inflammatory factors. In particular, tristetraprolin (TTP)-directed mRNA deadenylation destabilizes AU-rich element (ARE)-containing mRNAs. However, this mechanism alone cannot explain the variety of mRNA expression kinetics that are required to uncouple degradation of pro-inflammatory mRNAs from the sustained expression of anti-inflammatory mRNAs. Here, we show that the RNA-binding protein CPEB4 acts in an opposing manner to TTP in macrophages: it helps to stabilize anti-inflammatory transcripts harboring cytoplasmic polyadenylation elements (CPEs) and AREs in their 3'-UTRs, and it is required for the resolution of the lipopolysaccharide (LPS)-triggered inflammatory response. Coordination of CPEB4 and TTP activities is sequentially regulated through MAPK signaling. Accordingly, CPEB4 depletion in macrophages impairs inflammation resolution in an LPS-induced sepsis model. We propose that the counterbalancing actions of CPEB4 and TTP, as well as the distribution of CPEs and AREs in their target mRNAs, define transcript-specific decay patterns required for inflammation resolution. Thus, these two opposing mechanisms provide a fine-tuning control of inflammatory transcript destabilization while maintaining the expression of the negative feedback loops required for efficient inflammation resolution; disruption of this balance can lead to disease.


Asunto(s)
Macrófagos , Estabilidad del ARN , Proteínas de Unión al ARN , Tristetraprolina , Regiones no Traducidas 3' , Humanos , Inflamación/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA