Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 35(3): 261-280, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189228

RESUMEN

SIGNIFICANCE STATEMENT: Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND: In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS: The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS: After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS: This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.


Asunto(s)
Acidosis , Lesión Renal Aguda , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Calcitriol , Ácido Fólico , Inflamación , Interleucina-6 , Hormona Paratiroidea , Fosfatos , ARN Mensajero
2.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194286

RESUMEN

Neonatal gene therapy has been shown to prevent inner ear dysfunction in mouse models of Usher syndrome type I (USH1), the most common genetic cause of combined deafness-blindness and vestibular dysfunction. However, hearing onset occurs after birth in mice and in utero in humans, making it questionable how to transpose murine gene therapy outcomes to clinical settings. Here, we sought to extend the therapeutic time window in a mouse model for USH1G to periods corresponding to human neonatal stages, more suitable for intervention in patients. Mice with deletion of Ush1g (Ush1g-/-) were subjected to gene therapy after the hearing onset. The rescue of inner ear hair cell structure was evaluated by confocal imaging and electron microscopy. Hearing and vestibular function were assessed by recordings of the auditory brain stem response and vestibulo-ocular reflex and by locomotor tests. Up to P21, gene therapy significantly restored both the hearing and balance deficits in Ush1g-/- mice. However, beyond this age and up to P30, vestibular function was restored but not hearing. Our data show that effective gene therapy is possible in Ush1g-/- mice well beyond neonatal stages, implying that the therapeutic window for USH1G may be wide enough to be transposable to newborn humans.


Asunto(s)
Síndromes de Usher , Vestíbulo del Laberinto , Humanos , Animales , Ratones , Síndromes de Usher/genética , Síndromes de Usher/terapia , Audición , Terapia Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA