Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34312224

RESUMEN

Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Factores de Transcripción Forkhead/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Linfocitos T Reguladores/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proliferación Celular , Supervivencia Celular , Clonación Molecular , Factores de Transcripción Forkhead/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/inmunología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Terapia de Inmunosupresión , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Quinazolinas/farmacología , Transducción de Señal , Tiofenos/farmacología , Ubiquitina-Proteína Ligasas/genética
2.
Adv Biol Regul ; 76: 100722, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32362560

RESUMEN

The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Neoplasias/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Subunidades de Proteína/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Activación de Linfocitos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositoles/inmunología , Fosfatidilinositoles/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/patología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/patología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Células Th2/patología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología
3.
Data Brief ; 25: 104324, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31453298

RESUMEN

The data and information presented here refer to the research article entitled: "Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting with the human amniotic fluid stem cell secretome" (Balbi et al., 2019, Apr 04). This dataset illustrates the in vitro paracrine effect exerted by the human amniotic fluid stem cell secretome on rodent neonatal cardiomyocytes, human endothelial progenitors and different subsets of cardiac progenitor cells. Cytokine/chemokine profiling of the human amniotic fluid stem cell secretome is provided as well. This data can provide useful insights in regenerative medicine as demonstrating the in vitro cardioprotective and proliferative secretory paracrine potential of human fetal stem cells.

4.
Int J Cardiol ; 287: 87-95, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987834

RESUMEN

BACKGROUND: The adult mammalian heart retains residual regenerative capability via endogenous cardiac progenitor cell (CPC) activation and cardiomyocyte proliferation. We previously reported the paracrine cardioprotective capacity of human amniotic fluid-derived stem cells (hAFS) following ischemia or cardiotoxicity. Here we analyse the potential of hAFS secretome fractions for cardiac regeneration and future clinical translation. METHODS: hAFS were isolated from amniotic fluid leftover samples from prenatal screening. hAFS conditioned medium (hAFS-CM) was obtained following hypoxic preconditioning. Anti-apoptotic, angiogenic and proliferative effects were evaluated on rodent neonatal cardiomyocytes (r/mNVCM), human endothelial colony forming cells (hECFC) and human CPC. Mice undergoing myocardial infarction (MI) were treated with hAFS-CM, hAFS-extracellular vesicles (hAFS-EV), or EV-depleted hAFS-CM (hAFS-DM) by single intra-myocardial administration and evaluated in the short and long term. RESULTS: hAFS-CM improved mNVCM survival under oxidative and hypoxic damage, induced Ca2+-dependent angiogenesis in hECFC and triggered hCPC and rNVCM proliferation. hAFS-CM treatment after MI counteracted scarring, supported cardiac function, angiogenesis and cardiomyocyte cell cycle progression in the long term. hAFS-DM had no effect. hAFS-CM and hAFS-EV equally induced epicardium WT1+ CPC reactivation. Although no CPC cardiovascular differentiation was observed, our data suggests contribution to local angiogenesis by paracrine modulation. hAFS-EV alone were able to recapitulate all the beneficial effects exerted by hAFS-CM, except for stimulation of vessel formation. CONCLUSIONS: hAFS-CM and hAFS-EV can improve cardiac repair and trigger cardiac regeneration via paracrine modulation of endogenous mechanisms. While both formulations are effective in sustaining myocardial renewal, hAFS-CM retains higher pro-angiogenic potential, while hAFS-EV particularly enhances cardiac function.


Asunto(s)
Líquido Amniótico/citología , Insuficiencia Cardíaca/terapia , Miocitos Cardíacos/patología , Comunicación Paracrina/fisiología , Trasplante de Células Madre/métodos , Células Madre/citología , Animales , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Miocitos Cardíacos/metabolismo , Ratas , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA