RESUMEN
OBJECTIVE: The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS: We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS: A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION: Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Neocórtex , Enfermedad de Parkinson , Humanos , Cuerpos de Lewy/patología , Enfermedad de Parkinson/complicaciones , Enfermedad por Cuerpos de Lewy/patología , Neocórtex/patología , Enfermedad de Alzheimer/patologíaRESUMEN
Mitochondria are a culprit in the onset of Parkinson's disease, but their role during disease progression is unclear. Here we used Cox proportional hazards models to exam the effect of variation in the mitochondrial genome on longitudinal cognitive and motor progression over time in 4064 patients with Parkinson's disease. Mitochondrial macro-haplogroup was associated with reduced risk of cognitive disease progression in the discovery and replication population. In the combined analysis, patients with the super macro-haplogroup J, T, U# had a 41% lower risk of cognitive progression with P = 2.42 × 10-6 compared to those with macro-haplogroup H. Exploratory analysis indicated that the common mitochondrial DNA variant, m.2706A>G, was associated with slower cognitive decline with a hazard ratio of 0.68 (95% confidence interval 0.56-0.81) and P = 2.46 × 10-5. Mitochondrial haplogroups were not appreciably linked to motor progression. This initial genetic survival study of the mitochondrial genome suggests that mitochondrial haplogroups may be associated with the pace of cognitive progression in Parkinson's disease over time.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Haplotipos , Mitocondrias/genética , ADN Mitocondrial/genética , Progresión de la Enfermedad , CogniciónRESUMEN
BACKGROUND: Dysfunction of cerebellar vermis contributes to gait abnormalities in multiple conditions and may play a key role in gait impairment in Parkinson's disease (PD). OBJECTIVE: The purpose of this study was to investigate whether altered resting-state functional connectivity of the vermis relates to subsequent impairment of specific domains of gait in PD. METHODS: We conducted morphometric and resting-state functional connectivity MRI analyses contrasting 45 PD and 32 age-matched healthy participants. Quantitative gait measures were acquired with a GAITRite walkway at varying intervals after functional connectivity data acquisition. RESULTS: At baseline, PD participants had significantly altered functional connectivity between vermis and sensorimotor cortex compared with controls. Altered vermal functional connectivity with bilateral paracentral lobules correlated with subsequent measures of variability in stride length, step time, and single support time after controlling for confounding variables including the interval between imaging and gait measures. Similarly, altered functional connectivity between vermis and left sensorimotor cortex correlated with mean stride length and its variability. Vermis volume did not relate to any gait measure. PD participants did not differ from controls in vermis volume or cortical thickness at the site of significant regional clusters. Only altered lobule V:sensorimotor cortex functional connectivity correlated with subsequent gait measures in exploratory analyses involving all the other cerebellar lobules. CONCLUSIONS: These results demonstrate that abnormal vermal functional connectivity with sensorimotor cortex, in the absence of relevant vermal or cortical atrophy, correlates with subsequent gait impairment in PD. Our data reflect the potential of vermal functional connectivity as a novel imaging biomarker of gait impairment in PD. © 2021 International Parkinson and Movement Disorder Society.
Asunto(s)
Vermis Cerebeloso , Enfermedad de Parkinson , Cerebelo/diagnóstico por imagen , Marcha , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagenRESUMEN
BACKGROUND: Deep brain stimulation of the subthalamic nucleus is a widely used adjunctive therapy for motor symptoms of Parkinson's disease, but with variable motor response. Predicting motor response remains difficult, and novel approaches may improve surgical outcomes as well as the understanding of pathophysiological mechanisms. The objective of this study was to determine whether preoperative resting-state functional connectivity MRI predicts motor response from deep brain stimulation of the subthalamic nucleus. METHODS: We collected preoperative resting-state functional MRI from 70 participants undergoing subthalamic nucleus deep brain stimulation. For this cohort, we analyzed the strength of STN functional connectivity with seeds determined by stimulation-induced (ON/OFF) 15 O H2 O PET regional cerebral blood flow differences in a partially overlapping group (n = 42). We correlated STN-seed functional connectivity strength with postoperative motor outcomes and applied linear regression to predict motor outcomes. RESULTS: Preoperative functional connectivity between the left subthalamic nucleus and the ipsilateral internal globus pallidus correlated with postsurgical motor outcomes (r = -0.39, P = 0.0007), with stronger preoperative functional connectivity relating to greater improvement. Left pallidal-subthalamic nucleus connectivity also predicted motor response to DBS after controlling for covariates. DISCUSSION: Preoperative pallidal-subthalamic nucleus resting-state functional connectivity predicts motor benefit from deep brain stimulation, although this should be validated prospectively before clinical application. These observations suggest that integrity of pallidal-subthalamic nucleus circuits may be critical to motor benefits from deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.
Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Globo Pálido , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapiaRESUMEN
Denoising fMRI data requires assessment of frame-to-frame head motion and removal of the biases motion introduces. This is usually done through analysis of the parameters calculated during retrospective head motion correction (i.e., 'motion' parameters). However, it is increasingly recognized that respiration introduces factitious head motion via perturbations of the main (B0) field. This effect appears as higher-frequency fluctuations in the motion parameters (>0.1 âHz, here referred to as 'HF-motion'), primarily in the phase-encoding direction. This periodicity can sometimes be obscured in standard single-band fMRI (TR 2.0-2.5 âs) due to aliasing. Here we examined (1) how prevalent HF-motion effects are in seven single-band datasets with TR from 2.0 to 2.5 âs and (2) how HF-motion affects functional connectivity. We demonstrate that HF-motion is more common in older adults, those with higher body mass index, and those with lower cardiorespiratory fitness. We propose a low-pass filtering approach to remove the contamination of high frequency effects from motion summary measures, such as framewise displacement (FD). We demonstrate that in most datasets this filtering approach saves a substantial amount of data from FD-based frame censoring, while at the same time reducing motion biases in functional connectivity measures. These findings suggest that filtering motion parameters is an effective way to improve the fidelity of head motion estimates, even in single band datasets. Particularly large data savings may accrue in datasets acquired in older and less fit participants.
Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Vías Nerviosas/diagnóstico por imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Índice de Masa Corporal , Mapeo Encefálico , Niño , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Oxígeno/sangre , Aptitud Física , Estudios Retrospectivos , Adulto JovenRESUMEN
OBJECTIVE: The objective of this study was to investigate the effects of levodopa on functional brain networks in Parkinson's disease. METHODS: We acquired resting state functional magnetic resonance imaging in 30 drug-naïve participants with Parkinson's disease and 20 age-matched healthy controls. Each participant was studied following administration of a single oral dose of either levodopa or placebo in a randomized, double-blind, crossover design. RESULTS: The greatest observed differences in functional connectivity were between Parkinson's disease versus control participants, independent of pharmacologic intervention. By contrast, the effects of levodopa were much smaller and detectable only in the Parkinson's disease group. Moreover, although levodopa administration in the Parkinson's disease group measurably improved motor performance, it did not increase the similarity of functional connectivity in Parkinson's disease to the control group. CONCLUSIONS: We found that a single, small dose of levodopa did not normalize functional connectivity in drug-naïve Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Preparaciones Farmacéuticas , Antiparkinsonianos/uso terapéutico , Encéfalo/diagnóstico por imagen , Humanos , Levodopa , Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológicoRESUMEN
The hallmark pathology underlying Parkinson disease (PD) is progressive synucleinopathy, beginning in caudal brainstem that later spreads rostrally. However, the primarily subcortical pathology fails to account for the wide spectrum of clinical manifestations in PD. To reconcile these observations, resting-state functional connectivity (FC) can be used to examine dysfunction across distributed brain networks. We measured FC in a large, single-site study of nondemented PD (N = 107; OFF medications) and healthy controls (N = 46) incorporating rigorous quality control measures and comprehensive sampling of cortical, subcortical and cerebellar regions. We employed novel statistical approaches to determine group differences across the entire connectome, at the network-level, and for select brain regions. Group differences respected well-characterized network delineations producing a striking "block-wise" pattern of network-to-network effects. Surprisingly, these results demonstrate that the greatest FC differences involve sensorimotor, thalamic, and cerebellar networks, with notably smaller striatal effects. Split-half replication demonstrates the robustness of these results. Finally, block-wise FC correlations with behavior suggest that FC disruptions may contribute to clinical manifestations in PD. Overall, these results indicate a concerted breakdown of functional network interactions, remote from primary pathophysiology, and suggest that FC deficits in PD are related to emergent network-level phenomena rather than focal pathology.
Asunto(s)
Encéfalo/fisiopatología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Anciano , Conectoma/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana EdadRESUMEN
Many neuroscientists are interested in how connectomes (graphical representations of functional connectivity between areas of the brain) change in relation to covariates. In statistics, changes like this are analyzed using regression, where the outcomes or dependent variables are regressed onto the covariates. However, when the outcome is a complex object, such as connectome graphs, classical regression models cannot be used. The regression approach developed here to work with complex graph outcomes combines recursive partitioning with the Gibbs distribution. We will only discuss the application to connectomes, but the method is generally applicable to any graphical outcome. The method, called Gibbs-RPart, partitions the covariate space into a set of nonoverlapping regions such that the connectomes within regions are more similar than they are to the connectomes in other regions. This paper extends the object-oriented data analysis paradigm for graph-valued data based on the Gibbs distribution, which we have applied previously to hypothesis testing to compare populations of connectomes from distinct groups (see the work of La Rosa et al).
Asunto(s)
Conectoma/estadística & datos numéricos , Bioestadística , Encéfalo/diagnóstico por imagen , Simulación por Computador , Análisis de Datos , Humanos , Funciones de Verosimilitud , Imagen por Resonancia Magnética/estadística & datos numéricos , Modelos Neurológicos , Modelos Estadísticos , Enfermedad de Parkinson/diagnóstico por imagen , Análisis de RegresiónRESUMEN
OBJECTIVE: We developed a novel method to map behavioral effects of deep brain stimulation (DBS) across a 3-dimensional brain region and to assign statistical significance after stringent type I error correction. This method was applied to behavioral changes in Parkinson disease (PD) induced by subthalamic nucleus (STN) DBS to determine whether these responses depended on anatomical location of DBS. METHODS: Fifty-one PD participants with STN DBS were evaluated off medication, with DBS off and during unilateral STN DBS with clinically optimized settings. Dependent variables included DBS-induced changes in Unified Parkinson Disease Rating Scale (UPDRS) subscores, kinematic measures of bradykinesia and rigidity, working memory, response inhibition, mood, anxiety, and akathisia. Weighted t tests at each voxel produced p images showing where DBS most significantly affected each dependent variable based on outcomes of participants with nearby DBS. Finally, a permutation test computed the probability that this p image indicated significantly different responses based on stimulation site. RESULTS: Most motor variables improved with DBS anywhere in the STN region, but several motor, cognitive, and affective responses significantly depended on precise location stimulated, with peak p values in superior STN/zona incerta (quantified bradykinesia), dorsal STN (mood, anxiety), and inferior STN/substantia nigra (UPDRS tremor, working memory). INTERPRETATION: Our method identified DBS-induced behavioral changes that depended significantly on DBS site. These results do not support complete functional segregation within STN, because movement improved with DBS throughout, and mood improved with dorsal STN DBS. Rather, findings support functional convergence of motor, cognitive, and limbic information in STN.
Asunto(s)
Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/fisiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Resultado del TratamientoRESUMEN
The α-synuclein-immunoreactive pathology of dementia associated with Parkinson disease (DPD) comprises Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG). The densities of LB, LN, LG together with vacuoles, neurons, abnormally enlarged neurons (EN), and glial cell nuclei were measured in fifteen cases of DPD. Densities of LN and LG were up to 19 and 70 times those of LB, respectively, depending on region. Densities were significantly greater in amygdala, entorhinal cortex (EC), and sectors CA2/CA3 of the hippocampus, whereas middle frontal gyrus, sector CA1, and dentate gyrus were least affected. Low densities of vacuoles and EN were recorded in most regions. There were differences in the numerical density of neurons between regions, but no statistical difference between patients and controls. In the cortex, the density of LB and vacuoles was similar in upper and lower laminae, while the densities of LN and LG were greater in upper cortex. The densities of LB, LN, and LG were positively correlated. Principal components analysis suggested that DPD cases were heterogeneous with pathology primarily affecting either hippocampus or cortex. The data suggest in DPD: (1) ratio of LN and LG to LB varies between regions, (2) low densities of vacuoles and EN are present in most brain regions, (3) degeneration occurs across cortical laminae, upper laminae being particularly affected, (4) LB, LN and LG may represent degeneration of the same neurons, and (5) disease heterogeneity may result from variation in anatomical pathway affected by cell-to-cell transfer of α-synuclein.
Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Demencia , Enfermedad de Parkinson , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia/complicaciones , Demencia/metabolismo , Demencia/patología , Femenino , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Modelos Lineales , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ubiquitina/metabolismo , Vacuolas/metabolismo , Vacuolas/patologíaRESUMEN
Molecular imaging of brain vesicular acetylcholine transporter provides a biomarker to explore cholinergic systems in humans. We aimed to characterize the distribution of, and optimize methods to quantify, the vesicular acetylcholine transporter-specific tracer (-)-(1-(8-(2-[18F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([18F]VAT) in the brain using PET. Methods: Fifty-two healthy participants aged 21-97 y had brain PET with [18F]VAT. [3H]VAT autoradiography identified brain areas devoid of specific binding in cortical white matter. PET image-based white matter reference region size, model start time, and duration were optimized for calculations of Logan nondisplaceable binding potential (BPND). Ten participants had 2 scans to determine test-retest variability. Finally, we analyzed age-dependent differences in participants. Results: [18F]VAT was widely distributed in the brain, with high striatal, thalamic, amygdala, hippocampal, cerebellar vermis, and regionally specific uptake in the cerebral cortex. [3H]VAT autoradiography-specific binding and PET [18F]VAT uptake were low in white matter. [18F]VAT SUVs in the white matter reference region correlated with age, requiring stringent erosion parameters. Logan BPND estimates stabilized using at least 40 min of data starting 25 min after injection. Test-retest variability had excellent reproducibility and reliability in repeat BPND calculations for 10 participants (putamen, 6.8%; r > 0.93). We observed age-dependent decreases in the caudate and putamen (multiple comparisons corrected) and in numerous cortical regions. Finally, we provide power tables to indicate potential mean differences that can be detected between 2 groups of participants. Conclusion: These results validate a reference region for BPND calculations and demonstrate the viability, reproducibility, and utility of using the [18F]VAT tracer in humans to quantify cholinergic pathways.
Asunto(s)
Encéfalo , Piperidinas , Tomografía de Emisión de Positrones , Humanos , Adulto , Persona de Mediana Edad , Anciano , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Femenino , Reproducibilidad de los Resultados , Adulto Joven , Anciano de 80 o más Años , Piperidinas/farmacocinética , Piperidinas/metabolismo , Envejecimiento/metabolismo , Radiofármacos/farmacocinética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismoRESUMEN
BACKGROUND: We recently identified three distinct Parkinson's disease subtypes: "motor only" (predominant motor deficits with intact cognition and psychiatric function); "psychiatric & motor" (prominent psychiatric symptoms and moderate motor deficits); "cognitive & motor" (cognitive and motor deficits). OBJECTIVE: We used an independent cohort to replicate and assess reliability of these Parkinson's disease subtypes. METHODS: We tested our original subtype classification with an independent cohort (N = 100) of Parkinson's disease participants without dementia and the same comprehensive evaluations assessing motor, cognitive, and psychiatric function. Next, we combined the original (N = 162) and replication (N = 100) datasets to test the classification model with the full combined dataset (N = 262). We also generated 10 random split-half samples of the combined dataset to establish the reliability of the subtype classifications. Latent class analyses were applied to the replication, combined, and split-half samples to determine subtype classification. RESULTS: First, LCA supported the three-class solution - Motor Only, Psychiatric & Motor, and Cognitive & Motor- in the replication sample. Next, using the larger, combined sample, LCA again supported the three subtype groups, with the emergence of a potential fourth group defined by more severe motor deficits. Finally, split-half analyses showed that the three-class model also had the best fit in 13/20 (65%) split-half samples; two-class and four-class solutions provided the best model fit in five (25%) and two (10%) split-half replications, respectively. CONCLUSIONS: These results support the reproducibility and reliability of the Parkinson's disease behavioral subtypes of motor only, psychiatric & motor, and cognitive & motor groups.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/clasificación , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico , Femenino , Masculino , Reproducibilidad de los Resultados , Anciano , Persona de Mediana Edad , Estudios de Cohortes , Trastornos Mentales/clasificación , Trastornos Mentales/diagnóstico , Trastornos Mentales/etiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/clasificación , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnósticoRESUMEN
Deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson's disease (PD) improves motor functioning but has variable effects on mood. Little is known about the relationship between electrode contact location and mood response. The authors identified the anatomical location of electrode contacts and measured mood response to stimulation with the Visual Analog Scale in 24 STN DBS PD patients. Participants reported greater positive mood and decreased anxiety and apathy with bilateral and unilateral stimulation. Left DBS improved mood more than right DBS. Right DBS-induced increase in positive mood was related to more medial and dorsal contact locations. These results highlight the functional heterogeneity of the STN.
Asunto(s)
Afecto/fisiología , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Anciano , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Escala del Estado Mental , Persona de Mediana Edad , Análisis Multivariante , Dimensión del Dolor , Enfermedad de Parkinson/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND AND OBJECTIVES: People with Parkinson disease (PD) commonly experience cognitive decline, which may relate to increased α-synuclein, tau, and ß-amyloid accumulation. This study examines whether the different proteins predict longitudinal cognitive decline in PD. METHODS: All participants (PD n = 152, controls n = 52) were part of a longitudinal study and completed a lumbar puncture for CSF protein analysis (α-synuclein, total tau [tau], and ß-amyloid42 [ß-amyloid]), a ß-amyloid PET scan, and/or provided a blood sample for APOE genotype (ε4+, ε4-), which is a risk factor for ß-amyloid accumulation. Participants also had comprehensive, longitudinal clinical assessments of overall cognitive function and dementia status, as well as cognitive testing of attention, language, memory, and visuospatial and executive function. We used hierarchical linear growth models to examine whether the different protein metrics predict cognitive change and multivariate Cox proportional hazard models to predict time to dementia conversion. Akaike information criterion was used to compare models for best fit. RESULTS: Baseline measures of CSF ß-amyloid predicted decline for memory (p = 0.04) and overall cognitive function (p = 0.01). APOE genotypes showed a significant group (ε4+, ε4-) effect such that ε4+ individuals declined faster than ε4- individuals in visuospatial function (p = 0.03). Baseline ß-amyloid PET significantly predicted decline in all cognitive measures (all p ≤ 0.004). Neither baseline CSF α-synuclein nor tau predicted cognitive decline. All 3 ß-amyloid--related metrics (CSF, PET, APOE) also predicted time to dementia. Models with ß-amyloid PET as a predictor fit the data the best. DISCUSSION: Presence or risk of ß-amyloid accumulation consistently predicted cognitive decline and time to dementia in PD. This suggests that ß-amyloid has high potential as a prognostic indicator and biomarker for cognitive changes in PD.
Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Demencia/complicaciones , Humanos , Estudios Longitudinales , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Tomografía de Emisión de Positrones , alfa-Sinucleína , Proteínas tauRESUMEN
OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid ß (Aß) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aß, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aß, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aß accumulation, although the mean Aß level in LBD was lower than in AD. The presence of Aß was associated with greater α-syn accumulation. Tau accumulation accompanied Aß in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aß and α-syn accumulation suggests a pathophysiologic relationship between these two processes.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/análisis , Encéfalo/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , alfa-Sinucleína/análisis , Proteínas tau/análisis , Anciano , Anciano de 80 o más Años , Autopsia , Humanos , Neocórtex/metabolismoRESUMEN
Adenosine A(2a) receptor antagonists reduce symptom severity in Parkinson disease (PD) and animal models. Rodent studies support the hypothesis that A(2a) antagonists produce this benefit by reducing the inhibitory output of the basal ganglia indirect pathway. One way to test this hypothesis in humans is to quantify regional pharmacodynamic responses with cerebral blood flow (CBF) imaging. That approach has also been proposed as a tool to accelerate pharmaceutical dose finding, but has not yet been applied in humans to drugs in development. We successfully addressed both these aims with a perfusion magnetic resonance imaging (MRI) study of the novel adenosine A(2a) antagonist SYN115. During a randomized, double-blind, placebo-controlled, crossover study in 21 PD patients on levodopa but no agonists, we acquired pulsed arterial spin labeling MRI at the end of each treatment period. SYN115 produced a highly significant decrease in thalamic CBF, consistent with reduced pallidothalamic inhibition via the indirect pathway. Similar decreases occurred in cortical regions whose activity decreases with increased alertness and externally focused attention, consistent with decreased self-reported sleepiness on SYN115. Remarkably, we also derived quantitative pharmacodynamic parameters from the CBF responses to SYN115. These results suggested that the doses tested were on the low end of the effective dose range, consistent with clinical data reported separately. We conclude that (1) SYN115 enters the brain and exerts dose-dependent regional effects, (2) the most prominent of these effects is consistent with deactivation of the indirect pathway as predicted by preclinical studies; and (3) perfusion MRI can provide rapid, quantitative, clinically relevant dose-finding information for pharmaceutical development.
Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Circulación Cerebrovascular/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Antagonistas del Receptor de Adenosina A2/efectos adversos , Adulto , Anciano , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular/efectos de los fármacos , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Enfermedad de Parkinson/fisiopatologíaRESUMEN
The basal ganglia are thought to be important in the selection of wanted and the suppression of unwanted motor patterns according to explicit rules (i.e. response inhibition). The subthalamic nucleus has been hypothesized to play a particularly critical role in this function. Deep brain stimulation of the subthalamic nucleus in individuals with Parkinson's disease has been used to test this hypothesis, but results have been variable. Based on current knowledge of the anatomical organization of the subthalamic nucleus, we propose that the location of the contacts used in deep brain stimulation could explain variability in the effects of deep brain stimulation of the subthalamic nucleus on response inhibition tasks. We hypothesized that stimulation affecting the dorsal subthalamic nucleus (connected to the motor cortex) would be more likely to affect motor symptoms of Parkinson's disease, and stimulation affecting the ventral subthalamic nucleus (connected to higher order cortical regions) would be more likely to affect performance on a response inhibition task. We recruited 10 individuals with Parkinson's disease and bilateral deep brain stimulation of the subthalamic nucleus with one contact in the dorsal and another in the ventral subthalamic region on one side of the brain. Patients were tested with a Go-No-Go task and a motor rating scale in three conditions: stimulation off, unilateral dorsal stimulation and unilateral ventral stimulation. Both dorsal and ventral stimulation improved motor symptoms, but only ventral subthalamic stimulation affected Go-No-Go performance, decreasing hits and increasing false alarms, but not altering reaction times. These results suggest that the ventral subthalamic nucleus is involved in the balance between appropriate selection and inhibition of prepotent responses in cognitive paradigms, but that a wide area of the subthalamic nucleus region is involved in the motor symptoms of Parkinson's disease. This finding has implications for resolving inconsistencies in previous research, highlights the role of the ventral subthalamic nucleus region in response inhibition and suggests an approach for the clinical optimization of deep brain stimulation of the subthalamic nucleus for both motor and cognitive functions.
Asunto(s)
Inhibición Psicológica , Núcleo Subtalámico/fisiología , Anciano , Conducta/fisiología , Mapeo Encefálico , Toma de Decisiones/fisiología , Discriminación en Psicología , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Destreza Motora/fisiología , Pruebas Neuropsicológicas , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia , Desempeño Psicomotor/fisiología , Núcleo Subtalámico/patologíaRESUMEN
INTRODUCTION: Parkinson's disease (PD) is a movement disorder caused by dysfunction in the basal ganglia (BG). Clinically relevant gait deficits, such as decreased velocity and increased variability, may be caused by underlying neural dysfunction. Reductions in resting-state functional connectivity (rs-FC) between networks have been identified in PD compared to controls; however, the association between gait characteristics and rs-FC of brain networks in people with PD has not yet been explored. The present study aimed to investigate these associations. METHODS: Gait characteristics and rs-FC MRI data were collected for participants with PD (N = 50). Brain networks were identified from a set of seeds representing cortical, subcortical, and cerebellar regions. Gait outcomes were correlated with the strength of rs-FC within and between networks of interest. A stepwise regression analysis was also conducted to determine whether the rs-FC strength of brain networks, along with clinical motor scores, were predictive of gait characteristics. RESULTS: Gait velocity was associated with rs-FC within the visual network and between motor and cognitive networks, most notably BG-thalamus internetwork rs-FC. The stepwise regression analysis showed strength of BG-thalamus internetwork rs-FC and clinical motor scores were predictive of gait velocity. CONCLUSION: The results of the present study demonstrate gait characteristics are associated with functional organization of the brain at the network level, providing insight into the neural mechanisms of clinically relevant gait characteristics. This knowledge could be used to optimize the design of gait rehabilitation interventions for people with neurological conditions.
Asunto(s)
Marcha/fisiología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Anciano , Ganglios Basales/fisiopatología , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Cerebelo/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Descanso , Tálamo/fisiopatologíaRESUMEN
OBJECTIVE: To examine specific symptom progression patterns and possible disease staging in Parkinson disease clinical subtypes. METHODS: We recently identified Parkinson disease clinical subtypes based on comprehensive behavioral evaluations, "Motor Only," "Psychiatric & Motor," and "Cognitive & Motor," which differed in dementia and mortality rates. Parkinson disease participants ("Motor Only": n = 61, "Psychiatric & Motor": n = 17, "Cognitive & Motor": n = 70) and controls (n = 55) completed longitudinal, comprehensive motor, cognitive, and psychiatric evaluations (average follow-up = 4.6 years). Hierarchical linear modeling examined group differences in symptom progression. A three-way interaction among time, group, and symptom duration (or baseline age, separately) was incorporated to examine disease stages. RESULTS: All three subtypes increased in motor dysfunction compared to controls. The "Motor Only" subtype did not show significant cognitive or psychiatric changes compared to the other two subtypes. The "Cognitive & Motor" subtype's cognitive dysfunction at baseline further declined compared to the other two subtypes, while also increasing in psychiatric symptoms. The "Psychiatric & Motor" subtype's elevated psychiatric symptoms at baseline remained steady or improved over time, with mild, steady decline in cognition. The pattern of behavioral changes and analyses for disease staging yielded no evidence for sequential disease stages. INTERPRETATION: Parkinson disease clinical subtypes progress in clear, temporally distinct patterns from one another, particularly in cognitive and psychiatric features. This highlights the importance of comprehensive clinical examinations as the order of symptom presentation impacts clinical prognosis.