Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375373

RESUMEN

The interest in the consumption of edible flowers has increased since they represent a rich source of bioactive compounds, which are significantly beneficial to human health. The objective of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers presented pH value of 2.8 ± 0.00, soluble solids content of 3.4 ± 0.0 °Brix, high moisture content of about 91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was better than the results observed for other edible flowers (507.8 ± 2.7 µM TE and 783.9 ± 30.8 µM TE, respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives, kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting that the extract has no directly harmful effects to cells. The important bioactive compound identified in this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential without showing cytotoxicity.


Asunto(s)
Antocianinas , Hibiscus , Humanos , Antocianinas/química , Antioxidantes/química , Fenoles/química , Extractos Vegetales/química , Flores/química
2.
J Sci Food Agric ; 103(2): 548-559, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36054555

RESUMEN

BACKGROUND: Andean purple maize (APM) is an ancient crop widely used as a natural coloring in traditional Peruvian cuisine. However, it has been little explored within the food industry. The present study assessed how APM impacts on techno-functional properties and sensory acceptance of breakfast cereals. Extruded samples formulated with 100, 75, 50, and 25% APM, and complemented with yellow corn grits (YCG), were analyzed for their techno-functional and sensory properties. RESULTS: Increases in bulk density, as well as reduction in the expantion and porosity were observated for extrudates containing ≥ 50% APM, accompanied by an increase in purple color intensity. Increase in milk absorption index, reduction in milk solubility index and decrease in cereal hardness with increase in APM were also observed. Despite this, APM extented the cereal bowl-life. High sensory scores of overall liking (6) and color (7) were obtained for extruded formulations containing ≥ 50% APM and low values for extrudates with 25% APM. Aroma, flavor, and texture scores did not present significant differences. CONCLUSION: APM is an ingredient with the potential to be used to produce breakfast cereals since it improves their techno-functional characteristics and sensory acceptance, at the same time, it leads to the production of healthy, nutritious, and sustainable food. © 2022 Society of Chemical Industry.


Asunto(s)
Grano Comestible , Alimentos Especializados , Grano Comestible/química , Zea mays/química , Desayuno , Manipulación de Alimentos
3.
Trends Food Sci Technol ; 120: 274-287, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36569414

RESUMEN

Background: The increasing demand for healthy eating habits and the emergence of the COVID-19 pandemic, which resulted in a health crisis and global economic slowdown, has led to the consumption of functional and practical foods. Bioactive ingredients can be an alternative for healthy food choices; however, most functional compounds are sensitive to the adverse conditions of processing and digestive tract, impairing its use in food matrices, and industrial-scale applications. Microencapsulation by spray chilling can be a viable alternative to reduce these barriers in food processing. Scope and approach: This review discusses the use of spray chilling technique for microencapsulation of bioactive food ingredients. Although this technology is known in the pharmaceutical industry, it has been little exploited in the food sector. General aspects of spray chilling, the process parameters, advantages, and disadvantages are addressed. The feasibility and stability of encapsulated bioactive ingredients in food matrices and the bioavailability in vitro of solid lipid microparticles produced by spray chilling are also discussed. Main findings and conclusions: Research on the microencapsulation of bioactive ingredients by spray chilling for use in foods has shown the effectiveness of this technique to encapsulate bioactive compounds for application in food matrices. Solid microparticles produced by spray chilling can improve the stability and bioavailability of bioactive ingredients. However, further studies are required, including the use of lipid-based encapsulating agents, process parameters, and novel formulations for application in food, beverages, and packaging, as well as in vivo studies to prove the effectiveness of the formulations.

4.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234901

RESUMEN

Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating systems using sodium alginate as a carrier material and positively charged amino acids as stabilizing agents for the controlled release of bromelain in in vitro tests. The systems were produced from the experimental design of centroid simplex mixtures. Characterizations were performed by FTIR showing that bromelain was encapsulated in all systems. XRD analyses showed that the systems are semi-crystalline solids and through SEM analysis the morphology of the formed systems followed a pattern of rough microparticles. The application of statistical analysis showed that the systems presented behavior that can be evaluated by quadratic and special cubic models, with a p-value < 0.05. The interaction between amino acids and bromelain/alginate was evaluated, and free bromelain showed a reduction of 74.0% in protein content and 23.6% in enzymatic activity at the end of gastric digestion. Furthermore, a reduction of 91.6% of protein content and 65.9% of enzymatic activity was observed at the end of intestinal digestion. The Lis system showed better interaction due to the increased stability of bromelain in terms of the amount of proteins (above 63% until the end of the intestinal phase) and the enzymatic activity of 89.3%. Thus, this study proposes the development of pH-controlled release systems aiming at increasing the stability and bioavailability of bromelain in intestinal systems.


Asunto(s)
Alginatos , Bromelaínas , Alginatos/química , Aminoácidos , Preparaciones de Acción Retardada , Excipientes , Proyectos de Investigación
5.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744819

RESUMEN

Poly(o-methoxyaniline) emeraldine-salt form (ES-POMA) was chemically synthesized using hydrochloric acid and subjected to a heat treatment (HT) process for 1 h at 100 °C (TT100) and 200 °C (TT200). The HT process promoted a progressive decrease in crystallinity. The Le Bail method revealed a decomposition from tetrameric to trimeric-folded chains after the HT process. The unheated POMA-ES presented a globular vesicular morphology with varied micrometric sizes. The heat treatment promoted a reduction in these globular structures, increasing the non-crystalline phase. The boundary length (S) and connectivity/Euler feature (χ) parameters were calculated from the SEM images, revealing that ES-POMA presented a wide distribution of heights. The TT100 and TT200 presented a narrow boundary distribution, suggesting smoother surfaces with smaller height variations. The UV-VIS analysis revealed that the transition at 343 nm (nonlocal π → π*) was more intense in the TT200 due to the electronic delocalization, which resulted from the reduced polymer chain caused by the HT process. In addition to the loss of conjugation, counter ion withdrawal reduced the ion-chain interaction, decreasing the local electron density. This result shows the influence of the chlorine counter ions on the peaks position related to the HOMO → LUMO transition, since the π → polaron transition occurs due to the creation of the energy states due to the presence of counter ions. Finally, the electrical conductivity decreased after the HT process from 1.4 × 10-4 S.cm-1 to 2.4 × 10-6 S.cm-1 as result of the polymer deprotonation/degradation. Thus, this paper proposed a systematic evaluation of the POMA molecular structure and crystallite size and shape after heat treatment.


Asunto(s)
Calor , Poliaminas , Compuestos de Anilina , Conductividad Eléctrica , Poli A , Poliaminas/química , Polímeros/química
6.
Molecules ; 27(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234863

RESUMEN

Poly(p-anisidine) (PPA) is a polyaniline derivative presenting a methoxy (-OCH3) group at the para position of the phenyl ring. Considering the important role of conjugated polymers in novel technological applications, a systematic, combined experimental and theoretical investigation was performed to obtain more insight into the crystallization process of PPA. Conventional oxidative polymerization of p-anisidine monomer was based on a central composite rotational design (CCRD). The effects of the concentration of the monomer, ammonium persulfate (APS), and HCl on the percentage of crystallinity were considered. Several experimental techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), multifractal analysis, Nuclear Magnetic Resonance (13C NMR), Fourier-transform Infrared spectroscopy (FTIR), and complex impedance spectroscopy analysis, in addition to Density Functional Theory (DFT), were employed to perform a systematic investigation of PPA. The experimental treatments resulted in different crystal structures with a percentage of crystallinity ranging from (29.2 ± 0.6)% (PPA1HT) to (55.1 ± 0.2)% (PPA16HT-HH). A broad halo in the PPA16HT-HH pattern from 2θ = 10.0-30.0° suggested a reduced crystallinity. Needle and globular-particle morphologies were observed in both samples; the needle morphology might have been related to the crystalline contribution. A multifractal analysis showed that the PPA surface became more complex when the crystallinity was reduced. The proposed molecular structures of PPA were supported by the high-resolution 13C NMR results, allowing us to access the percentage of head-to-tail (HT) and head-to-head (HH) molecular structures. When comparing the calculated and experimental FTIR spectra, the most pronounced changes were observed in ν(C-H), ν(N-H), ν(C-O), and ν(C-N-C) due to the influence of counterions on the polymer backbone as well as the different mechanisms of polymerization. Finally, a significant difference in the electrical conductivity was observed in the range of 1.00 × 10-9 S.cm-1 and 3.90 × 10-14 S.cm-1, respectively, for PPA1HT and PPA16HT-HH.


Asunto(s)
Polímeros , Compuestos de Anilina , Cristalización/métodos , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
7.
Molecules ; 27(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956855

RESUMEN

The development of conjugated polymer-based nanocomposites by adding metallic particles into the polymerization medium allows the proposition of novel materials presenting improved electrical and optical properties. Polyaniline Emeraldine-salt form (ES-PANI) has been extensively studied due to its controllable electrical conductivity and oxidation states. On the other hand, tungsten oxide (WO3) and its di-hydrated phases, such as WO3·2H2O, have been reported as important materials in photocatalysis and sensors. Herein, the WO3·2H2O phase was directly obtained during the in-situ polymerization of aniline hydrochloride from metallic tungsten (W), allowing the formation of hybrid nanocomposites based on its full oxidation into WO3·2H2O. The developed ES-PANI-WO3·2H2O nanocomposites were successfully characterized using experimental techniques combined with Density Functional Theory (DFT). The formation of WO3·2H2O was clearly verified after two hours of synthesis (PW2 nanocomposite), allowing the confirmation of purely physical interaction between matrix and reinforcement. As a result, increased electrical conductivity was verified in the PW2 nanocomposite: the DFT calculations revealed a charge transfer from the p-orbitals of the polymeric phase to the d-orbitals of the oxide phase, resulting in higher conductivity when compared to the pure ES-PANI.

8.
Rev Esp Enferm Dig ; 113(6): 423-428, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33228364

RESUMEN

BACKGROUND AND AIM: carcinoembryonic antigen (CEA) is a biomarker commonly used in colorectal cancer. However, its prognostic value is still controversial. Recent studies demonstrate that CEA produced locally by tumor cells has a higher prognostic value compared to serum CEA. This study aimed to determine whether there was an association between the CEA/tumor size ratio (CEA/ExT) and the pathological tumor response in patients with rectal adenocarcinoma (ADC), who underwent neoadjuvant chemoradiotherapy (N-CRT), followed by surgical tumor resection. METHODS: a retrospective study was performed of rectal ADC patients who underwent N-CRT followed by curative surgery between March/2012 and October/2017. CEA and tumor extension for pre-treatment CEA/ExT calculation and the pathological response in the surgical specimen after treatment were analyzed. RESULTS: eighty-nine patients were included, 60.7 % were male and the mean age was 63.8 ± 10.42. There was a good response to N-CRT in 41.6 % of the patients, tumor downstaging occurred in 83.1 % and a complete pathological response in 23.6 % of cases. The average CEA/ExT was 2.01 ng/ml/cm. In the univariate analysis, higher CEA/ExT values were related to a lower frequency of pathological response (p = 0.04) and to a lower frequency of tumor downstaging (p = 0.02). In the multivariate analysis, CEA/ExT was independently related to tumor downstaging (OR: 0.72; 95 % IC: 0.53-0.98, p-0.036). CONCLUSIONS: lower pre-treatment CEA/ExT values seem to be associated with tumor downstaging and this parameter may be a promising predictor of a more favorable response in patients with rectal ADC undergoing treatment with N-CRT.


Asunto(s)
Adenocarcinoma , Neoplasias del Recto , Adenocarcinoma/patología , Adenocarcinoma/terapia , Anciano , Antígeno Carcinoembrionario , Quimioradioterapia , Humanos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Estadificación de Neoplasias , Pronóstico , Neoplasias del Recto/patología , Neoplasias del Recto/terapia , Estudios Retrospectivos , Resultado del Tratamiento
9.
J Sci Food Agric ; 100(8): 3471-3480, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32166755

RESUMEN

BACKGROUND: A viable possibility for the best use of bioactive compounds present in camu-camu, fruit native to the Amazonian rainforest, is the preparation of microcapsules using different biopolymers by the spray-drying technique, which would increase the possibilities for innovation in the food industry, as well as facilitate the application in different food matrices. In this context, the chemical, physicochemical, and morphological properties and stability of camu-camu extract (peel and pulp) spray-dried using maltodextrin, inulin, and oligofructose as encapsulating agents were investigated, as well as lyophilized camu-camu extract (CEL). Different relative humidities (22%, 51%, and 75%) and temperatures (25 °C and 45 °C) were evaluated. RESULTS: The moisture, water activity, and solubility values varied from 18.4 to 107.9 g water per kilogram dry powder, 0.06 to 0.27, and 950.80 to 920.28 g microparticles per kilogram of water respectively. Retention of the bioactive compounds varied in the ranges 5.5-7.1 g per kilogram ascorbic acid fresh weight and 7.2-9.0 g per kilogram anthocyanins fresh weight. The increase in temperature and relative humidity during storage provided a significant decrease in the stability of the bioactive compounds for all treatments. However, the CEL presented higher water adsorption kinetics and degradation under all storage conditions, indicating the importance of the use of encapsulating agents. CONCLUSION: In general, the prebiotic biopolymers used as encapsulating agents in the microencapsulation of extracts of camu-camu by spray-drying presented satisfactory results, suggesting that this technique is an effective strategy to increase the stability of bioactive compounds contained in fruits and vegetables. © 2020 Society of Chemical Industry.


Asunto(s)
Biopolímeros/química , Myrtaceae/química , Extractos Vegetales/química , Prebióticos/análisis , Manipulación de Alimentos , Frutas/química , Inulina/química , Polisacáridos/química , Polvos/química , Solubilidad
10.
J Sci Food Agric ; 99(2): 685-695, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29971785

RESUMEN

BACKGROUND: The encapsulated essential oils (EOs) of Piper aduncum L. and Piper hispidinervum C. DC. in gelatin nanoparticles were evaluated against Aedes aegypti Linn., Tetranychus urticae Koch and Cerataphis lataniae Boisd. RESULTS: Encapsulation efficiency of the EOs was measured for absolute concentrations of 500 µg mL-1 (79.2 and 72.7%) and 1000 µg mL-1 (84.5 and 82.2%). The loaded nanoparticles were nearly spherical and well dispersed. The nanoparticles loaded with P. hispidinervum EO had an average size of 100 ± 2 nm, while the nanoparticles containing P. aduncum EO ranged from 175 ± 4 to 220 ± 4 nm. According to zeta potential analysis, the nanoparticles loaded with P. hispidinervum and P. aduncum EOs presented values around -43.5 ± 3 and -37.5 ± 2 mV respectively. The controlled release of EOs was described by the anomalous mechanism of Korsmeyer-Peppas. Both encapsulated EOs reached lethal dosages within 24 h of exposure and total mortality of the tested pests. CONCLUSION: The present work successfully developed gelatin-based nanoparticles that served as carriers for the EOs of P. aduncum and P. hispidinervum to be applied as a sustainable control tool of A. aegypti, T. urticae and C. lataniae. The developed loaded nanoparticles presented high encapsulation efficiency and EO concentration release higher than lethal dosages. This indicates that it is feasible to use gelatin-based nanoparticles loaded with P. aduncum and P. hispidinervum EOs to control the tested pests. © 2018 Society of Chemical Industry.


Asunto(s)
Aedes/efectos de los fármacos , Áfidos/efectos de los fármacos , Composición de Medicamentos/métodos , Aceites Volátiles/química , Plaguicidas/química , Piper/química , Aceites de Plantas/química , Tetranychidae/efectos de los fármacos , Animales , Composición de Medicamentos/instrumentación , Gelatina/química , Nanopartículas/química , Aceites Volátiles/farmacología , Control de Plagas , Plaguicidas/farmacología , Aceites de Plantas/farmacología
11.
J Microencapsul ; 34(6): 535-544, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28795848

RESUMEN

The aim of this work was to study the use of different prebiotic biopolymers in lime essential oil microencapsulation. Whey protein isolate, inulin and oligofructose biopolymers were used. The addition of prebiotic biopolymers reduced emulsion viscosity, although it produced larger droplet sizes (0.31-0.32 µm). Moisture values (2.94-3.13 g/100 g dry solids) and water activity (0.152-0.185) were satisfactory, being within the appropriate range for powdered food quality. Total oil content, limonene retention values and antioxidant activity of the microparticles containing essential oil decreased in the presence of the carbohydrates. The addition of prebiotic biopolymers reduced the microparticle thermal stability. X-ray diffraction confirmed the amorphous characteristic of the microparticles and the interaction of the essential oil with the wall material. The presence of prebiotic biopolymers can be a good alternative for lime essential oil microparticles, mainly using fibre that has a functional food appeal and can improve consumer health.


Asunto(s)
Compuestos de Calcio/química , Inulina/química , Aceites Volátiles/química , Oligosacáridos/química , Óxidos/química , Biopolímeros/química , Ciclohexenos/química , Emulsiones , Limoneno , Tamaño de la Partícula , Prebióticos , Terpenos/química , Viscosidad
12.
Int J Biol Macromol ; 258(Pt 1): 128882, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141712

RESUMEN

Drug-release systems have attracted attention over the last few years since they can be used as a substitute for traditional methods of drug delivery. These have the advantage of being directly administered at the treatment site and can maintain the drug at adequate levels for a longer period, thus increasing their efficacy. Starch-based films are interesting candidates for use as matrices for drug release, especially due to starch's non-toxic properties and its biocompatibility. Endophytic fungi are an important source of bioactive molecules, including secondary metabolites such as phenolic compounds with antioxidant activity. In the present study, cassava starch-based films were developed to act as release systems of phenolic compounds with antioxidant activity. The Amazonian endophytic fungus Aspergillus niger MgF2 was cultivated in liquid media, and the fungal extract was obtained by liquid-liquid partition with ethyl acetate. The starch-based films incorporated with the fungal extract were characterized in regards to their physicochemical properties. The release kinetics of the extract from the film and its antioxidant and cytotoxic properties were also evaluated. The films incorporated with the extract presented maximum release after 25 min at 37 °C and pH 6.8. In addition, it was observed that the antioxidant compounds of the fungal extract maintain their activity after being released from the film, and were non-toxic. Therefore, considering the promising physicochemical properties of the extract-incorporated films, and their considerable antioxidant capacity, the films demonstrate great biotechnological potential with diverse applications in the pharmacological and cosmetic industries.


Asunto(s)
Antioxidantes , Manihot , Antioxidantes/química , Manihot/química , Fenoles , Almidón/química , Hongos
13.
Microsc Res Tech ; 87(8): 1933-1954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38563156

RESUMEN

The environment preservation has been an important motivation to find alternative, functional, and biodegradable materials to replace polluting petrochemicals. The production of nonbiodegradable face masks increased the concentration of microplastics in the environment, highlighting the need for sustainable alternatives, such as the use of local by-products to create efficient and eco-friendly filtering materials. Furthermore, the use of smart materials can reduce the risk of contagion and virus transmission, especially in the face of possible mutations. The development of novel materials is necessary to ensure less risk of contagion and virus transmission, as well as to preserve the environment. Taking these factors into account, 16 systems were developed with different combinations of precursor materials (holocellulose, polyaniline [ES-PANI], graphene oxide [GO], silver nanoparticles [AgNPs], and activated carbon [AC]). Adsorption tests of the spike protein showed that the systems containing GO and AC were the most efficient in the adsorption process. Similarly, plate tests conducted using the VSV-IN strain cultured in HepG2 cells showed that the system containing all phases showed the greatest reduction in viral titer method. In agreement, the biocompatibility tests showed that the compounds extracted from the systems showed low cytotoxicity or no significant cytotoxic effect in human fibroblasts. As a result, the adsorption tests of the spike protein, viral titration, and biocompatibility tests showed that systems labeled as I and J were the most efficient. In this context, the present research has significantly contributed to the technological development of antiviral systems, with improved properties and increased adsorption efficiency, reducing the viral titer and contributing efficiently to public health. In this way, these alternative materials could be employed in sensors and devices for filtering and sanitization, thus assisting in mitigating the transmission of viruses and bacteria. RESEARCH HIGHLIGHTS: Sixteen virus adsorbent systems were developed with different combinations of precursor materials (holocellulose, polyaniline (ES-PANI), graphene oxide (GO), silver nanoparticles (AgNPs), and activated carbon (AC)). The system that included all of the nanocomposites holocellulose, PANI, GO, AgNPs, and AC showed the greatest reduction in viral titration. The biocompatibility tests revealed that all systems caused only mild or moderate cytotoxicity toward human fibroblasts.


Asunto(s)
Grafito , Plata , Humanos , Adsorción , Grafito/química , Plata/farmacología , Plata/química , Células Hep G2 , Nanopartículas del Metal/química , Compuestos de Anilina/farmacología , Compuestos de Anilina/química , Celulosa/química , Celulosa/farmacología , Nanoestructuras/química , Carbón Orgánico/química , Carbón Orgánico/farmacología
14.
Food Res Int ; 166: 112626, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914332

RESUMEN

The Passiflora genus (Passifloraceae family) extends worldwide, but it is mainly found in the Americas. The present review aimed to select the main reports published over the last 5 years involving the chemical composition, health benefits, and products obtained from the pulps of Passifora spp. The pulps of at least 10 species of Passiflora have been studied presenting different classes of organic compounds, especially phenolic acids, and polyphenols. The main bioactivity properties include antioxidant and in vitro α-amylase and α-glucosidase enzyme inhibition. These reports highlight the potential of Passiflora for the development of a variety of products, especially fermented and non-fermented beverages, as well as foods to attend a demand for non-dairy products. In general, these products are prominent source of probiotic bacteria resistant to in vitro gastrointestinal simulation, representing an alternative for intestinal microbiota regulation. Therefore, sensory analysis is encouraging herein, as well as in vivo tests to enable the development of high value pharmaceuticals and food products. The patents confirm the great interest in research and products development in different food technology areas, as well as in biotechnology, pharmacy, and materials engineering.


Asunto(s)
Passiflora , Passiflora/química , Frutas/química , Antioxidantes/análisis , Polifenoles/análisis , Bacterias
15.
Food Res Int ; 173(Pt 1): 113310, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803621

RESUMEN

The Sapotaceae family encompasses the genus Pouteria spp., comprising approximately 1,250 species of fruits cherished by consumers for their delightful assortment and flavors. Over the years, extensive research has been devoted to exploring the natural bioactive compounds present in these fruits, with the primary goal of preventing and/or mitigating the risk of degenerative diseases. Despite their widespread popularity in numerous countries, the chemistry, nutritional content, and biological potential of these fruits remain relatively unexplored. This comprehensive review aims to shed light on the principal volatile and non-volatile chemical components found in Pouteria fruits, which present notable antioxidant properties. By doing so, a broad perspective on the current trends in characterizing these compounds and their potential applications were provided, as well as the associated health benefits. Additionally, the prospects and potential applications of Pouteria fruits in the food industry were explored herein.


Asunto(s)
Frutas , Pouteria , Frutas/química , Pouteria/química , Antioxidantes/análisis , Industria de Alimentos
16.
Artículo en Inglés | MEDLINE | ID: mdl-37865950

RESUMEN

Sapota-do-Solimões (Quararibea cordata Vischer) is Amazon South América fruit found in Brazil, Colombia, Ecuador, and Peru. The orange-yellow fruit is usually eaten out of hand or as juice. Despite being a source of carotenoids and dietary fibers (pectin) that can reach the colon and act as an energy source for intestinal microbiota, the fruit is rarely known outside of South America. The symbiotic juice was prepared by fermenting the fruit juice with Lacticaseibacillus casei B-442 and adding prebiotic fructooligosaccharides (FOS, 7% w/v). This study evaluated the functional juice immediately after L. casei fermentation (SSJ0) and after 30 days of cold storage (SSJ30) regarding its effect on human colonic microbiota composition after in vitro fermentation. Fecal samples were collected from two healthy female volunteers, and the 16s rRNA gene sequencing analyzed the fecal microbiota composition. In vitro, colonic fermentation was performed using a batch bioreactor to simulate gastrointestinal conditions. The L. casei viability did not change significantly after 30 days of the synbiotic juice cold storage (4 °C). After the colonic fermentation, the relative abundance of Firmicutes decreased while Proteobacteria and Actinobacteria increased. Regarding short-chain fatty acid (SCFA) production by fecal colonic microbiota, the butyric acid was higher after sample SSJ0 fecal fermentation. In contrast, propionic, isobutyric, and acetic acids were higher after SSJ30 sample fecal fermentation. This study contributes to understanding the interactions between specific foods and the gut microbiota, which can affect human health and well-being.

17.
Food Res Int ; 166: 112611, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914355

RESUMEN

Anthocyanins from grape peel extract have several biological properties and can act as a natural colorant and antioxidant agent. However, these compounds are susceptible to degradation by light, oxygen, temperature, and the gastrointestinal tract. Thus, this study produced microstructured lipid microparticles (MLMs) containing anthocyanins by the spray chilling technique and evaluated the particle stability. trans-free fully hydrogenated palm oil (FHPO) and palm oil (PO) were used as encapsulating materials in the ratios 90:10, 80:20, 70:30, 60:40, and 50:50, respectively. The concentration of grape peel extract was 40 % (w/w) in relation to the encapsulating materials. The microparticles were evaluated for thermal behavior by DSC, polymorphism, FTIR, size distribution and particle diameter, bulk density, tapped density, flow properties, morphology, phenolic compounds content, antioxidant capacity, and retention of anthocyanins. Furthermore, the storage stability of the microparticles was investigated at different temperatures (-18, 4, and 25 °C), and the anthocyanins retention capacity, kinetic parameters (half-life time and degradation constant rate), total color difference, and visual aspects were evaluated during 90 days of storage. The resistance of MLMs to the gastrointestinal tract was also evaluated. In general, higher FHPO concentrations increased the thermal resistance of the MLMs and both showed defined peaks of ß' and ß forms. The FTIR analysis showed that the MLMs preserved the original forms of their constituent materials even after atomization, with interactions between them. The increase in the PO concentration directly affected the increased mean particle diameter, agglomeration, and cohesiveness, as well as lower bulk density, tapped density, and flowability. The retention of anthocyanins in MLMs ranged from 81.5 to 61.3 % and was influenced by the particle size, with a better result observed for the treatment MLM_90:10. The same behavior was observed for the phenolic compounds content (1443.1-1247.2 mg GAE/100 g) and antioxidant capacity (1739.8-1660.6 mg TEAC/100 g). During the storage, MLMs made with FHPO to PO ratios of 80:20, 70:30, and 60:40 showed the highest stability for anthocyanin retention and color changes at the three temperatures (- 18 °C, 4 °C, and 25 °C). The gastrointestinal simulation in vitro revealed that all treatments were resistant to gastric phase and maintained a maximum and controlled release in the intestinal phase, demonstrating that FHPO together with PO are effective to protect anthocyanins during gastric digestion, and can improve the bioavailability of this compound in the human organism. Thus, the spray chilling technique may be a promising alternative for the production of anthocyanins-loaded microstructured lipid microparticles with functional properties for various technological applications.


Asunto(s)
Antocianinas , Antioxidantes , Humanos , Antocianinas/análisis , Antioxidantes/análisis , Aceite de Palma , Fenoles/análisis , Tracto Gastrointestinal/química , Extractos Vegetales/análisis
18.
Food Res Int ; 167: 112663, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087253

RESUMEN

Thermal processes can be very damaging to the nutritional and sensory quality of foods. Non-thermal technologies have been applied to reduce the impact of heat on food, reducing processing time and increasing its efficiency. Among many non-thermal technologies, cold plasma is an emerging technology with several potential applications in food processing. This technique can be used to preserve and sanitize food products, and act as a pre-treatment for drying, extraction, cooking, curing, and hydrogenation of foods. Furthermore, the reacting plasma species formed during the plasma application can change positively the sensory and nutritional aspects of foods. The aim of this review is to analyze the main findings on the application of cold plasma as a pre-treatment technology to improve food processing. In its current maturity stage, the cold plasma technology is suitable for reducing drying time, increasing extraction efficiency, as well as curing meats. This technology can convert unsaturated into saturated fats, without forming trans isomers, which can be an alternative to healthier foods. Although many advantages come from cold plasma applications, this technology still has several challenges, such as the scaling up, especially in increasing productivity and treating foods with large formats. Optimization and control of the effects of plasma on nutritional and sensory quality are still under investigation. Further improvement of the technology will come with a higher knowledge of the effects of plasma on the different chemical groups present in foods, and with the development of bigger or more powerful plasma systems.


Asunto(s)
Gases em Plasma , Alimentos , Manipulación de Alimentos/métodos , Calidad de los Alimentos , Conservación de Alimentos/métodos
19.
Food Res Int ; 164: 112396, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737979

RESUMEN

The effect of probiotic strains (Lactobacillus acidophilus La-03 (La-03); Lactobacillus acidophilus La-05 (La-05); Bifidobacterium Bb-12 (Bb-12) or Lacticaseibacillus casei-01 (L. casei-01)) on the characteristics of fermented whey-milk beverages during storage (4 °C, 30 days) was evaluated. The products were assessed for biological and antioxidant activities, physicochemical characteristics, and bioactive peptides. Probiotic addition increased α-amylase and α-glucosidase inhibition and antioxidant activities, mainly at 15 days of storage. L. casei-01 showed higher metabolic activity (higher titratable acidity and lower pH values) and the presence of anti-hypertensive peptides, while La-5 and Bb-12 showed higher α-glucosidase inhibition, improvements in the high saturated hypercholesterolemic index, and peptides with ACE-inhibitory, antimicrobial, immunomodulatory, and antioxidant activities. Our findings suggest that probiotic fermented whey-milk beverages may exert antidiabetic and antioxidant properties, being suggested La-5 or Bb-12 as probiotics and 15 days of storage.


Asunto(s)
Bebidas Fermentadas , Probióticos , Animales , alfa-Glucosidasas/metabolismo , Antioxidantes/análisis , Fermentación , Lacticaseibacillus casei , Leche/química , Péptidos/análisis , Probióticos/metabolismo , Suero Lácteo/química , Proteína de Suero de Leche/química , Bebidas Fermentadas/microbiología
20.
United European Gastroenterol J ; 11(1): 51-59, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575615

RESUMEN

INTRODUCTION: Evidence supporting transmural remission (TR) as a long-term treatment target in Crohn's disease (CD) is still unavailable. Less stringent but more reachable targets such as isolated endoscopic (IER) or radiologic remission (IRR) may also be acceptable options in the long-term. METHODS: Multicenter retrospective study including 404 CD patients evaluated by magnetic resonance enterography and colonoscopy. Five-year rates of hospitalization, surgery, use of steroids, and treatment escalation were compared between patients with TR, IER, IRR, and no remission (NR). RESULTS: 20.8% of CD patients presented TR, 23.3% IER, 13.6% IRR and 42.3% NR. TR was associated with lower risk of hospitalization (odds-ratio [OR] 0.244 [0.111-0.538], p < 0.001), surgery (OR 0.132 [0.030-0.585], p = 0.008), steroid use (OR 0.283 [0.159-0.505], p < 0.001), and treatment escalation (OR 0.088 [0.044-0.176], p < 0.001) compared to no NR. IRR resulted in lower risk of hospitalization (OR 0.333 [0.143-0.777], p = 0.011) and treatment escalation (OR 0.260 [0.125-0.540], p < 0.001), while IER reduced the risk of steroid use (OR 0.442 [0.262-0.745], p = 0.002) and treatment escalation (OR 0.490 [0.259-0.925], p = 0.028) compared to NR. CONCLUSIONS: TR improved clinical outcomes over 5 years of follow-up in CD patients. Distinct but significant benefits were seen with IER and IRR. This suggests that both endoscopic and radiologic remission should be part of the treatment targets of CD.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/tratamiento farmacológico , Estudios Retrospectivos , Colonoscopía , Imagen por Resonancia Magnética/métodos , Inducción de Remisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA