Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cytokine ; 85: 120-2, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27322964

RESUMEN

Several molecules have been described as CD4+ T cells differentiation modulators and among them retinoic acid (RA) and more recently, IL-33, have been studied. Due to the similarities in T helper cell skewing properties between RA and IL-33, we asked whether IL-33 intersects, directly or indirectly, the RA signaling pathway. Total CD4+ T cells from DR5-luciferase mice were activated in the presence of RA with or without IL-33, and RA signaling was visualized using ex vivo imaging. Our results demonstrate that IL-33 itself is able to trigger RA signaling on CD4+ T cells, which is highly increased when IL-33 is added in conjunction with RA. This study presents IL-33 as a potential player that may synergize with RA in controlling T cell differentiation, and suggests that IL-33 may be an attractive target in controlling T cell differentiation in vivo.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Interleucina-33/metabolismo , Transducción de Señal/fisiología , Tretinoina/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ratones
2.
Immunology ; 146(1): 81-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25988395

RESUMEN

Interleukin-33 (IL-33) has been a focus of study because of its variety of functions shaping CD4(+) T-cell biology. In the present work, we evaluated the modulatory effect of IL-33 on suppressor cells in an in vivo transplantation model. C57BL/6 wild-type mice were grafted with syngeneic or allogeneic skin transplants and treated with exogenous IL-33 daily. After 10 days of treatment, we analysed draining lymph node cellularity and found in allogeneic animals an increment in myeloid-derived suppressor cells, which co-express MHC-II, and become enriched upon IL-33 treatment. In line with this observation, inducible nitric oxide synthase and arginase 1 expression were also increased in allogeneic animals upon IL-33 administration. In addition, IL-33 treatment up-regulated the number of Foxp3(+) regulatory T (Treg) cells in the allogeneic group, complementing the healthier integrity of the allografts and the increased allograft survival. Moreover, we demonstrate that IL-33 promotes CD4(+) T-cell expansion and conversion of CD4(+)  Foxp3(-) T cells into CD4(+)  Foxp3(+) Treg cells in the periphery. Lastly, the cytokine pattern of ex vivo-stimulated draining lymph nodes indicates that IL-33 dampens interferon-γ and IL-17 production, stimulating IL-10 secretion. Altogether, our work complements previous studies on the immune-modulatory activity of IL-33, showing that this cytokine affects myeloid-derived suppressor cells at the cell number and gene expression levels. More importantly, our research demonstrates for the first time that IL-33 allows for in vivo Foxp3(+) Treg cell conversion and favours an anti-inflammatory or tolerogenic state by skewing cytokine production. Therefore, our data suggest a potential use of IL-33 to prevent allograft rejection, bringing new therapeutics to the transplantation field.


Asunto(s)
Rechazo de Injerto/inmunología , Supervivencia de Injerto/inmunología , Interleucinas/farmacología , Trasplante de Piel , Linfocitos T Reguladores/inmunología , Animales , Arginasa/biosíntesis , Diferenciación Celular/inmunología , Proliferación Celular , Factores de Transcripción Forkhead/inmunología , Antígenos de Histocompatibilidad Clase II/biosíntesis , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Interferón gamma/biosíntesis , Interleucina-10/biosíntesis , Interleucina-10/metabolismo , Interleucina-17/biosíntesis , Interleucina-33 , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Piel/inmunología , Linfocitos T Reguladores/citología , Células TH1/citología , Células TH1/inmunología , Células Th17/citología , Células Th17/inmunología , Trasplante Isogénico
3.
Immunol Cell Biol ; 93(2): 113-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25245111

RESUMEN

During allograft rejection, several immune cell types, including dendritic cells, CD4(+) and CD8(+) T cells among others, recirculate between the graft and the nearest draining lymph node, resulting in immunity against the 'foreign' tissue. Regulatory CD4(+) T cells are critical for controlling the magnitude of the immune response and may act to promote or maintain tolerance. They are characterized by the expression of CD25 and Foxp3, and more recently, Neuropilin-1 (Nrp1). The role of these suppressor cells during allograft rejection is not well understood. Our work shows that during graft rejection, there is an increase in the frequency of total CD4(+) T cells expressing Nrp1, but the expression of this molecule is downregulated in the regulatory CD4(+) T-cell compartment. Interestingly, the expression of the transcription factor Eos, which renders cell function stability, is also reduced. In adoptive transfer experiments, we observed that during allograft rejection: (i) natural regulatory CD4(+) T cells maintain high levels of Nrp1 expression, (ii) effector CD4(+) T cells (Nrp1(-)) become Nrp1(+)Eos(+) and (iii) the transfer of regulatory CD4(+) T cells (Nrp1(+)) can promote allograft survival, and also enhance the gain of Nrp1 and Eos on T-effector cells. Together, these data suggest that rejection occurs, at least in part, through the loss of Nrp1 expression on regulatory CD4(+) T cells, their stability or both. Additionally, the transfer of regulatory CD4(+) T cells (based on Nrp1 expression) permits the acceptance of the allograft, placing Nrp1 as a new target for immune therapy.


Asunto(s)
Aloinjertos/inmunología , Supervivencia de Injerto/inmunología , Neuropilina-1/metabolismo , Trasplante de Piel , Linfocitos T Reguladores/inmunología , Animales , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Regulación hacia Abajo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Linfocitos T Reguladores/metabolismo
4.
Front Immunol ; 14: 1199594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593736

RESUMEN

The innate immune lymphocyte lineage natural killer (NK) cell infiltrates tumor environment where it can recognize and eliminate tumor cells. NK cell tumor infiltration is linked to patient prognosis. However, it is unknown if some of these antitumor NK cells leave the tumor environment. In blood-borne cancers, NK cells that have interacted with leukemic cells are recognized by the co-expression of two CD45 isoforms (CD45RARO cells) and/or the plasma membrane presence of tumor antigens (Ag), which NK cells acquire by trogocytosis. We evaluated solid tumor Ag uptake by trogocytosis on NK cells by performing co-cultures in vitro. We analyzed NK population subsets by unsupervised dimensional reduction techniques in blood samples from breast tumor (BC) patients and healthy donors (HD). We confirmed that NK cells perform trogocytosis from solid cancer cells in vitro. The extent of trogocytosis depends on the target cell and the antigen, but not on the amount of Ag expressed by the target cell or the sensitivity to NK cell killing. We identified by FlowSOM (Self-Organizing Maps) several NK cell clusters differentially abundant between BC patients and HD, including anti-tumor NK subsets with phenotype CD45RARO+CD107a+. These analyses showed that bona-fide NK cells that have degranulated were increased in patients and, additionally, these NK cells exhibit trogocytosis of solid tumor Ag on their surface. However, the frequency of NK cells that have trogocytosed is very low and much lower than that found in hematological cancer patients, suggesting that the number of NK cells that exit the tumor environment is scarce. To our knowledge, this is the first report describing the presence of solid tumor markers on circulating NK subsets from breast tumor patients. This NK cell immune profiling could lead to generate novel strategies to complement established therapies for BC patients or to the use of peripheral blood NK cells in the theranostic of solid cancer patients after treatment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hematológicas , Neoplasias Mamarias Animales , Animales , Humanos , Femenino , Antígenos de Neoplasias , Células Asesinas Naturales , Membrana Celular
5.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831451

RESUMEN

CD20 monoclonal antibodies (mAbs) eliminate B cells in several clinical contexts. At least two of these Abs, obinutuzumab (OBI) and rituximab (RTX), induce quick elimination of targets and put cancer patients at risk of tumor lysis syndrome (TLS) within 12-24 h of the first dose. The mechanisms of killing can require the recruiting of effector mechanisms from the patient's immune system, but they can induce direct killing as well. This can be more rapid than recruiting cellular effectors and/or complement. We showed here that OBI and RTX induce quick (<1 h) and high (up to 60% for OBI) killing of two different B cell lines. This was unveiled by using two different techniques that circumvent cell centrifugation steps: a Muse® Cell Analyzer-based approach and a direct examination of the cells' physical properties by using forward scatter (FS) area and side scatter (SS) area by flow cytometry. These results excluded the presence of aggregates and were also confirmed by developing a normalized survival ratio based on the co-incubation of RTX- and OBI-sensitive cells with MOLM-13, an insensitive cell line. Finally, this normalized survival ratio protocol confirmed the RTX- and OBI-direct killing on primary tumor B cells from B cell chronic lymphocytic leukemia (B-CLL) and Non-Hodgkin's lymphoma (NHL) patients. Moreover, we unveiled that direct killing is higher than previously expected and absent in patients' samples at relapse. We also observed that these mAbs, prior to increasing intracellular calcium levels, decrease calcium entry, although manipulating calcium levels did not affect their cytotoxicity. Altogether, our results show that direct killing is a major mechanism to induce cell death by RTX and OBI mAbs.

6.
Vaccines (Basel) ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35632444

RESUMEN

NK cells play a major role in the antiviral immune response, including against HIV-1. HIV-1 patients have impaired NK cell activity with a decrease in CD56dim NK cells and an increase in the CD56-CD16+ subset, and recently it has been proposed that a population of CD56+NKG2C+KIR+CD57+ cells represents antiviral memory NK cells. Antiretroviral therapy (ART) partly restores the functional activity of this lymphocyte lineage. NK cells when interacting with their targets can gain antigens from them by the process of trogocytosis. Here we show that NK cells can obtain CCR5 and CXCR4, but barely CD4, from T cell lines by trogocytosis in vitro. By UMAP (Uniform Manifold Approximation and Projection), we show that aviremic HIV-1 patients have unique NK cell clusters that include cells expressing CCR5, NKG2C and KIRs, but lack CD57 expression. Viremic patients have a larger proportion of CXCR4+ and CCR5+ NK cells than healthy donors (HD) and this is largely increased in CD107+ cells, suggesting a link between degranulation and trogocytosis. In agreement, UMAP identified a specific NK cell cluster in viremic HIV-1 patients, which contains most of the CD107a+, CCR5+ and CXCR4+ cells. However, this cluster lacks NKG2C expression. Therefore, NK cells can gain CCR5 and CXCR4 by trogocytosis, which depends on degranulation.

7.
J Extracell Vesicles ; 11(6): e12237, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676234

RESUMEN

Among the mechanisms of suppression that T regulatory (Treg) cells exert to control the immune responses, the secretion of small extracellular vesicles (sEV) has been recently proposed as a novel contact-independent immunomodulatory mechanism. Previous studies have demonstrated that Treg cells produce sEV, including exosomes, able to modulate the effector function of CD4+ T cells, and antigen presenting cells (APCs) such as dendritic cells (DCs) through the transfer of microRNA, cytokines, the production of adenosine, among others. Previously, we have demonstrated that Neuropilin-1 (Nrp1) is required for Tregs-mediated immunosuppression mainly by impacting on the phenotype and function of effector CD4+ T cells. Here, we show that Foxp3+ Treg cells secrete sEV, which bear Nrp1 in their membrane. These sEV modulate effector CD4+ T cell phenotype and proliferation in vitro in a Nrp1-dependent manner. Proteomic analysis indicated that sEV obtained from wild type (wt) and Nrp1KO Treg cells differed in proteins related to immune tolerance, finding less representation of CD73 and Granzyme B in sEV obtained from Nrp1KO Treg cells. Likewise, we show that Nrp1 is required in Treg cell-derived sEV for inducing skin transplantation tolerance, since a reduction in graft survival and an increase on M1/M2 ratio were found in animals treated with Nrp1KO Treg cell-derived sEV. Altogether, this study describes for the first time that Treg cells secrete sEV containing Nrp1 and that this protein, among others, is necessary to promote transplantation tolerance in vivo via sEV local administration.


Asunto(s)
Vesículas Extracelulares , Linfocitos T Reguladores , Animales , Vesículas Extracelulares/metabolismo , Neuropilina-1 , Proteómica , Trasplante de Piel , Factores de Transcripción/metabolismo
8.
Front Immunol ; 13: 1029006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341327

RESUMEN

T cell cytotoxicity plays a major role in antiviral immunity. Anti-SARS-CoV-2 immunity may determine acute disease severity, but also the potential persistence of symptoms (long COVID). We therefore measured the expression of perforin, a cytotoxic mediator, in T cells of patients recently hospitalized for SARS-CoV-2 infection. We recruited 54 volunteers confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to Intensive Care Units (ICUs) or non-ICU, and 29 age- and sex-matched healthy controls (HCs). Amounts of intracellular perforin and granzyme-B, as well as cell surface expression of the degranulation marker CD107A were determined by flow cytometry. The levels of 15 cytokines in plasma were measured by Luminex. The frequency of perforin-positive T4 cells and T8 cells was higher in patients than in HCs (9.9 ± 10.1% versus 4.6 ± 6.4%, p = 0.006 and 46.7 ± 20.6% vs 33.3 ± 18.8%, p = 0.004, respectively). Perforin expression was neither correlated with clinical and biological markers of disease severity nor predictive of death. By contrast, the percentage of perforin-positive T8 cells in the acute phase of the disease predicted the onset of long COVID one year later. A low T8 cytotoxicity in the first days of SARS-CoV-2 infection might favor virus replication and persistence, autoimmunity, and/or reactivation of other viruses such as Epstein-Barr virus or cytomegalovirus, paving the way for long COVID. Under this hypothesis, boosting T cell cytotoxicity during the acute phase of the infection could prevent delayed sequelae.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Humanos , Perforina/genética , SARS-CoV-2 , Herpesvirus Humano 4 , Linfocitos T CD8-positivos , Síndrome Post Agudo de COVID-19
9.
Theranostics ; 11(1): 445-460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391485

RESUMEN

Objectives: Mesenchymal Stem/Stromal Cells (MSC) are promising therapeutic tools for inflammatory diseases due to their potent immunoregulatory capacities. Their suppressive activity mainly depends on inflammatory cues that have been recently associated with changes in MSC bioenergetic status towards a glycolytic metabolism. However, the molecular mechanisms behind this metabolic reprogramming and its impact on MSC therapeutic properties have not been investigated. Methods: Human and murine-derived MSC were metabolically reprogramed using pro-inflammatory cytokines, an inhibitor of ATP synthase (oligomycin), or 2-deoxy-D-glucose (2DG). The immunosuppressive activity of these cells was tested in vitro using co-culture experiments with pro-inflammatory T cells and in vivo with the Delayed-Type Hypersensitivity (DTH) and the Graph versus Host Disease (GVHD) murine models. Results: We found that the oligomycin-mediated pro-glycolytic switch of MSC significantly enhanced their immunosuppressive properties in vitro. Conversely, glycolysis inhibition using 2DG significantly reduced MSC immunoregulatory effects. Moreover, in vivo, MSC glycolytic reprogramming significantly increased their therapeutic benefit in the DTH and GVHD mouse models. Finally, we demonstrated that the MSC glycolytic switch effect partly depends on the activation of the AMPK signaling pathway. Conclusion: Altogether, our findings show that AMPK-dependent glycolytic reprogramming of MSC using an ATP synthase inhibitor contributes to their immunosuppressive and therapeutic functions, and suggest that pro-glycolytic drugs might be used to improve MSC-based therapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucólisis/efectos de los fármacos , Enfermedad Injerto contra Huésped/inmunología , Hipersensibilidad Tardía/inmunología , Células Madre Mesenquimatosas/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Animales , Antimetabolitos/farmacología , Linfocitos T CD4-Positivos , Desoxiglucosa/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Humanos , Inmunoterapia , Ácido Láctico/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oligomicinas/farmacología , Fosforilación Oxidativa , Consumo de Oxígeno
10.
Cells ; 9(7)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664207

RESUMEN

Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Animales , Diferenciación Celular/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología
11.
J Leukoc Biol ; 108(3): 813-824, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531824

RESUMEN

T regulatory (Treg) cells have a major role in the maintenance of immune tolerance against self and foreign antigens through the control of harmful inflammation. Treg cells exert immunosuppressive function by several mechanisms, which can be distinguished as contact dependent or independent. Recently, the secretion of extracellular vesicles (EVs) by Treg cells has been reported as a novel suppressive mechanism capable of modulating immunity in a cell-contact independent and targeted manner, which has been identified in different pathologic scenarios. EVs are cell-derived membranous structures involved in physiologic and pathologic processes through protein, lipid, and genetic material exchange, which allow intercellular communication. In this review, we revise and discuss current knowledge on Treg cells-mediated immune tolerance giving special attention to the production and release of EVs. Multiple studies support that Treg cells-derived EVs represent a refined intercellular exchange device with the capacity of modulating immune responses, thus creating a tolerogenic microenvironment in a cell-free manner. The mechanisms proposed encompass miRNAs-induced gene silencing, the action of surface proteins and the transmission of enzymes. These observations gain relevance by the fact that Treg cells are susceptible to converting into effector T cells after exposition to inflammatory environments. Yet, in contrast to their cells of origin, EVs are unlikely to be modified under inflammatory conditions, highlighting the advantage of their use. Moreover, we speculate in the possibility that Treg cells may contribute to infectious tolerance via vesicle secretion, intervening with CD4+ T cells differentiation and/or stability.


Asunto(s)
Vesículas Extracelulares/inmunología , Tolerancia Inmunológica/inmunología , Linfocitos T Reguladores/inmunología , Animales , Subgrupos de Linfocitos B/inmunología , Microambiente Celular , Factores de Transcripción Forkhead/fisiología , Silenciador del Gen , Humanos , Proteínas de Punto de Control Inmunitario/fisiología , Tolerancia Inmunológica/genética , Inmunoterapia , Inflamación/inmunología , Linfocinas/metabolismo , Ratones , MicroARNs/genética , Modelos Inmunológicos , Receptores Inmunológicos/fisiología
12.
Front Immunol ; 10: 882, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068948

RESUMEN

Several mechanisms of immune suppression have been attributed to Foxp3+ T regulatory cells (Treg) including modulation of target cells via inhibition of cell proliferation, alteration of cytokine secretion, and modification of cell phenotype, among others. Neuropilin-1 (Nrp1), a co-receptor protein highly expressed on Treg cells has been involved in tolerance-mediated responses, driving tumor growth and transplant acceptance. Here, we extend our previous findings showing that, despite expressing Foxp3, Nrp1KO Treg cells have deficient suppressive function in vitro in a contact-independent manner. In vivo, the presence of Nrp1 on Treg cells is required for driving long-term transplant tolerance. Interestingly, Nrp1 expression on Treg cells was also necessary for conventional CD4+ T cells (convT) to become Nrp1+Eos+ T cells in vivo. Furthermore, adoptive transfer experiments showed that the disruption of Nrp1 expression on Treg cells not only reduced IL-10 production on Treg cells, but also increased the frequency of IFNγ+ Treg cells. Similarly, the presence of Nrp1KO Treg cells facilitated the occurrence of IFNγ+CD4+ T cells. Interestingly, we proved that Nrp1KO Treg cells are also defective in IL-10 production, which correlates with deficient Nrp1 upregulation by convT cells. Altogether, these findings demonstrate the direct role of Nrp1 on Treg cells during the induction of transplantation tolerance, impacting indirectly the phenotype and function of conventional CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Inmunomodulación , Neuropilina-1/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Tolerancia al Trasplante/inmunología , Traslado Adoptivo , Animales , Biomarcadores , Femenino , Técnicas de Silenciamiento del Gen , Tolerancia Inmunológica , Inmunofenotipificación , Masculino , Ratones , Neuropilina-1/metabolismo , Trasplante de Piel
13.
Front Immunol ; 9: 112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29479348

RESUMEN

Regulatory T cells (Tregs) are critical players of immunological tolerance due to their ability to suppress effector T cell function thereby preventing transplant rejection and autoimmune diseases. During allograft transplantation, increases of both Treg expansion and generation, as well as their stable function, are needed to ensure allograft acceptance; thus, efforts have been made to discover new molecules that enhance Treg-mediated tolerance and to uncover their mechanisms. Recently, vitamin C (VitC), known to regulate T cell maturation and dendritic cell-mediated T cell polarization, has gained attention as a relevant epigenetic remodeler able to enhance and stabilize the expression of the Treg master regulator gene Foxp3, positively affecting the generation of induced Tregs (iTregs). In this study, we measured VitC transporter (SVCT2) expression in different immune cell populations, finding Tregs as one of the cell subset with the highest levels of SVCT2 expression. Unexpectedly, we found that VitC treatment reduces the ability of natural Tregs to suppress effector T cell proliferation in vitro, while having an enhancer effect on TGFß-induced Foxp3+ Tregs. On the other hand, VitC increases iTregs generation in vitro and in vivo, however, no allograft tolerance was achieved in animals orally treated with VitC. Lastly, Tregs isolated from the draining lymph nodes of VitC-treated and transplanted mice also showed impaired suppression capacity ex vivo. Our results indicate that VitC promotes the generation and expansion of Tregs, without exhibiting CD4+ T cell-mediated allograft tolerance. These observations highlight the relevance of the nutritional status of patients when immune regulation is needed.


Asunto(s)
Ácido Ascórbico/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Factores de Transcripción Forkhead/inmunología , Trasplante de Piel , Vitaminas/farmacología , Animales , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/efectos de los fármacos , Supervivencia de Injerto , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Sodio Acoplados a la Vitamina C/inmunología , Tolerancia al Trasplante
14.
Ann N Y Acad Sci ; 1417(1): 35-56, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28700815

RESUMEN

Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies.


Asunto(s)
Células Madre Mesenquimatosas/inmunología , Tolerancia al Trasplante/inmunología , Animales , Linfocitos B/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos , Ensayos Clínicos como Asunto , Células Dendríticas/inmunología , Humanos , Tolerancia Inmunológica , Macrófagos/inmunología , Trasplante de Células Madre Mesenquimatosas , Modelos Inmunológicos , Monocitos/inmunología , Linfocitos T/inmunología
15.
Front Immunol ; 6: 232, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26082774

RESUMEN

IL-33 is a known member of the IL-1 cytokine superfamily classically named "atypical" due to its diverse functions. The receptor for this cytokine is the ST2 chain (or IL-1RL1), part of the IL-1R family, and the accessory chain IL-1R. ST2 can be found as both soluble and membrane-bound forms, property that explains, at least in part, its wide range of functions. IL-33 has increasingly gained our attention as a potential target to modulate immune responses. At the beginning, it was known as one of the participants during the development of allergic states and other Th2-mediated responses and it is now accepted that IL-33 contributes to Th1-driven pathologies as demonstrated in animal models of experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis, and trinitrobenzene sulfonic acid-induced experimental colitis, among others. Interestingly, current data are placing IL-33 as a novel regulator of immune tolerance by affecting regulatory T cells (Tregs); although the mechanism is not fully understood, it seems that dendritic cells and myeloid suppressor-derived cells may be cooperating in the generation and/or establishment of IL-33-mediated tolerance. Here, we review the most updated literature on IL-33, its role on T cell biology, and its impact in immune tolerance.

16.
Immunobiology ; 220(6): 769-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25592248

RESUMEN

Retinoic acid (RA), a vitamin A metabolite, has been attributed to relevant functions in adaptive immunity. On T cells, the disruption on RA signaling alters both CD4+ and CD8+ T cells effector function. In this study, we evaluated the contribution of RA synthesis during the immune response using an in vivo skin transplantation model. Our data indicates that the frequency and number of cells containing an active retinaldehyde dehydrogenase (RALDH), a key enzyme for RA synthesis, is increased during skin transplant rejection. In addition, we found that the expression of the mRNA coding for the isoform RALDH2 is up-regulated on graft rejecting draining lymph nodes (dLNs) cells. Lastly, we observed that IFN-γ and IL-17 production by ex vivo re-stimulated dLNs cells is greatly increased during rejection, which it turns depends on RA synthesis, as shown in experiments using a specific RALDH inhibitor. Altogether, our data demonstrate that RA synthesis is incremented during the immune response against an allograft, and also indicates that the synthesis of RA is required for cytokine production by dLNs resident T cells.


Asunto(s)
Aloinjertos/inmunología , Citocinas/biosíntesis , Rechazo de Injerto/inmunología , Retinal-Deshidrogenasa/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Aloinjertos/metabolismo , Animales , Activación Enzimática , Expresión Génica , Rechazo de Injerto/genética , Ratones , Modelos Animales , Retinal-Deshidrogenasa/genética , Trasplante de Piel , Trasplante Homólogo , Tretinoina/metabolismo
17.
Immunotherapy ; 7(2): 101-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25713986

RESUMEN

AIM: To date, there is no human dendritic cell (DC) based therapy to prevent allograft rejection in transplanted patients. Here, we evaluate a potential protocol using a murine in vivo transplant model. MATERIALS & METHODS: We generated murine bone marrow-derived DCs (BM-DCs), modulated with rapamycin (Rapa) and activated with monophosphoryl lipid A (Rapamycin-treated and monophosphoryl lipid A-matured DCs [Rapa-mDCs]). DCs phenotype was evaluated by flow cytometry, cytokine production by ELISA and their T-cell stimulatory ability was tested in co-cultures with CD4(+) T cells. Using an in vivo skin graft model, we evaluated DCs tolerogenicity. RESULTS: In vitro, Rapa-mDCs exhibit a semi-mature phenotype given by intermediate levels of co-stimulatory molecules and cytokines, and inhibit CD4(+) T-cell proliferation. In vivo, skin-grafted mice treated with Rapa-mDCs show high allograft survival, accumulation of Foxp3(+) Tregs and cytokine pattern modification. CONCLUSION: Rapa-mDCs re-educate the inflammatory microenvironment, promoting skin-allograft survival.


Asunto(s)
Células Dendríticas/trasplante , Rechazo de Injerto/prevención & control , Inmunosupresores/farmacología , Lípido A/análogos & derivados , Sirolimus/farmacología , Trasplante de Piel , Aloinjertos , Animales , Linfocitos T CD4-Positivos/inmunología , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/inmunología , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Humanos , Lípido A/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
18.
Front Immunol ; 4: 405, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24324469

RESUMEN

In the immune system, Neuropilin-1 (Nrp1) is a molecule that plays an important role in establishing the immunological synapse between dendritic cells (DCs) and T cells. Recently, Nrp1 has been identified as a marker that seems to distinguish natural T regulatory (nTreg) cells, generated in the thymus, from inducible T regulatory (iTreg) cells raised in the periphery. Given the crucial role of both nTreg and iTreg cells in the generation and maintenance of immune tolerance, the ability to phenotypically identify each of these cell populations in vivo is needed to elucidate their biological properties. In turn, these properties have the potential to be developed for therapeutic use to promote immune tolerance. Here we describe the nature and functions of Nrp1, including its potential use as a therapeutic target in transplantation tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA