Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000447

RESUMEN

mTOR inhibitors (mTOR-Is) may induce proteinuria in kidney transplant recipients through podocyte damage. However, the mechanism has only been partially defined. Total cell lysates and supernatants of immortalized human podocytes treated with different doses of everolimus (EVE) (10, 100, 200, and 500 nM) for 24 h were subjected to mass spectrometry-based proteomics. Support vector machine and partial least squares discriminant analysis were used for data analysis. The results were validated in urine samples from 28 kidney transplant recipients receiving EVE as part of their immunosuppressive therapy. We identified more than 7000 differentially expressed proteins involved in several pathways, including kinases, cell cycle regulation, epithelial-mesenchymal transition, and protein synthesis, according to gene ontology. Among these, after statistical analysis, 65 showed an expression level significantly and directly correlated with EVE dosage. Polo-Like Kinase 1 (PLK1) content was increased, whereas osteopontin (SPP1) content was reduced in podocytes and supernatants in a dose-dependent manner and significantly correlated with EVE dose (p < 0.0001, FDR < 5%). Similar results were obtained in the urine of kidney transplant patients. This study analyzed the impact of different doses of mTOR-Is on podocytes, helping to understand not only the biological basis of their therapeutic effects but also the possible mechanisms underlying proteinuria.


Asunto(s)
Everolimus , Inmunosupresores , Podocitos , Proteómica , Humanos , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Everolimus/farmacología , Proteómica/métodos , Inmunosupresores/farmacología , Trasplante de Riñón , Quinasa Tipo Polo 1 , Proteoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Femenino , Proteinuria , Masculino , Osteopontina
2.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762196

RESUMEN

Kidney disease is a global health and healthcare burden. Glomerulonephritis (Gn), both primary and secondary, is generally characterized by an inflammatory glomerular injury and may lead to end-stage renal disease. Kidney biopsy is fundamental to the diagnosis; however, kidney biopsy presents some concerns that may partly hamper the clinical process. Therefore, more accurate diagnostic tools are needed. Extracellular vesicles (EVs) are membranous vesicles released by cells and found in bodily fluids, including urine. EVs mediate intercellular signaling both in health and disease. EVs can have both harmful and cytoprotective effects in kidney diseases, especially Gn. Previous findings reported that the specific cargo of urinary EV contains an aerobic metabolic ability that may either restore the recipient cell metabolism or cause oxidative stress production. Here, we provide an overview of the most recent proteomic findings on the role of EVs in several aspects of glomerulopathies, with a focus on this metabolic and redox potential. Future studies may elucidate how the ability of EVs to interfere with aerobic metabolism and redox status can shed light on aspects of Gn etiology which have remained elusive so far.


Asunto(s)
Vesículas Extracelulares , Glomerulonefritis , Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Humanos , Glomeruloesclerosis Focal y Segmentaria/patología , Proteómica , Glomerulonefritis/patología , Enfermedades Renales/patología , Vesículas Extracelulares/patología , Biomarcadores , Riñón/patología
3.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176025

RESUMEN

Glomerulonephritis are renal disorders resulting from different pathogenic mechanisms (i.e., autoimmunity, complement, inflammatory activation, etc.). Clarifying details of the pathogenic cascade is basic to limit the progression from starting inflammation to degenerative stages. The balance between tissue injury, activation of protective systems and renal tissue repair determines the final outcome. Induction of an oxidative stress is part of glomerular inflammation and activation of protective antioxidant systems has a crucial role in reducing tissue effects. The generation of highly reactive oxygen species can be evaluated in vivo by tracing the inner-layer content of phosphatidyl ethanolamine and phosphatidyl serine in cell membranes. Albumin is the major antioxidant in serum and the level of oxidized albumin is another indirect sign of oxidative stress. Studies performed in Gn, specifically in FSGS, showed a high degree of oxidation in most contexts. High levels of circulating anti-SOD2 antibodies, limiting the detoxyfing activity of SOD2, have been detected in autoimmune Gn(lupus nephritis and membranous nephropathy) in association with persistence of proteinuria and worsening of renal function. In renal transplant, high levels of circulating anti-Glutathione S-transferase antibodies have been correlated with chronic antibody rejection and progressive loss of renal function. Annexins, mainly ANXA1 and ANXA2, play a general anti-inflammatory effect by inhibiting neutrophil functions. Cytosolic ANXA1 is decreased in apoptotic neutrophils of patients with glomerular polyangitis in association with delayed apoptosis that is considered the mechanism for polyangitis. High circulating levels of anti-ANXA1 and anti-ANXA2 antibodies characterize lupus nephritis implying a reduced anti-inflammatory effect. High circulating levels of antibodies targeting Macrophages (anti-FMNL1) have been detected in Gn in association with proteinuria. They potentially modify the intra-glomerular presence of protective macrophages (M2a, M2c) thus acting on the composition of renal infiltrate and on tissue repair.


Asunto(s)
Glomerulonefritis , Nefritis Lúpica , Humanos , Antioxidantes , Glomerulonefritis/patología , Inflamación , Proteinuria , Antiinflamatorios
4.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762695

RESUMEN

Plastic pollution became a main challenge for human beings as demonstrated by the increasing dispersion of plastic waste into the environment. Microplastics (MPs) have become ubiquitous and humans are exposed daily to inhalation or ingestion of plastic microparticles. Recent studies performed using mainly spectroscopy or spectrometry-based techniques have shown astounding evidence for the presence of MPs in human tissues, organs and fluids. The placenta, meconium, breast milk, lung, intestine, liver, heart and cardiovascular system, blood, urine and cerebrovascular liquid are afflicted by MPs' presence and deposition. On the whole, obtained data underline a great heterogeneity among different tissue and organs of the polymers characterized and the microparticles' dimension, even if most of them seem to be below 50-100 µm. Evidence for the possible contribution of MPs in human diseases is still limited and this field of study in medicine is in an initial state. However, increasing studies on their toxicity in vitro and in vivo suggest worrying effects on human cells mainly mediated by oxidative stress, inflammation and fibrosis. Nephrological studies are insufficient and evidence for the presence of MPs in human kidneys is still lacking, but the little evidence present in the literature has demonstrated histological and functional alteration of kidneys in animal models and cytotoxicity through apoptosis, autophagy, oxidative stress and inflammation in kidney cells. Overall, the manuscript we report in this review recommends urgent further study to analyze potential correlations between kidney disease and MPs' exposure in human.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Plásticos/química , Contaminación Ambiental , Riñón/química , Fibrosis , Contaminantes Químicos del Agua/análisis
5.
J Autoimmun ; 132: 102900, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087539

RESUMEN

Mechanisms for the generation of anti-dsDNA autoantibodies are still not completely elucidated. One theory states that dsDNA interacts for mimicry with antibodies raised versus other antigens but molecular features for mimicry are unknown. Here we show that, at physiological acid-base balance, anti-Annexin A1 binds IgG2 dsDNA in a competitive and dose-dependent way with Annexin A1 and that the competition between the two molecules is null at pH 9. On the other hand, these findings also show that dsDNA and Annexin A1 interact with their respective antibodies on a strictly pH-dependent basis: in both cases, the binding was minimal at pH 4 and maximal at pH9-10. The anionic charge of dsDNA is mainly conferred by the numerous phosphatidic residues. The epitope binding site of Annexin A1 for anti-Annexin A1 IgG2 was here characterized as a string of 34 amino acids at the NH2 terminus, 10 of which are anionic. Circulating levels of anti-dsDNA and anti-Annexin A1 IgG2 antibodies were strongly correlated in patients with systemic lupus erythematosus (n 496) and lupus nephritis (n 425) stratified for age, sex, etc. These results show that dsDNA competes with Annexin A1 for the binding with anti-Annexin A1 IgG2 on a dose and charged mediated base, being able to display an inhibition up to 75%. This study provides the first demonstration that dsDNA may interact with antibodies raised versus other anionic molecules (anti-Annexin A1 IgG2) because of charge mimicry and this interaction may contribute to anti-dsDNA antibodies generation.


Asunto(s)
Anexina A1 , Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Anticuerpos Antinucleares , Autoanticuerpos , Inmunoglobulina G , Anexina A1/metabolismo , ADN
6.
Kidney Blood Press Res ; 47(12): 683-692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36265463

RESUMEN

BACKGROUND: Medullary sponge kidney (MSK) disease is a rare and neglected congenital condition typically associated with nephrocalcinosis/nephrolithiasis, urinary concentration defects, and cystic anomalies in the precalyceal ducts that, although sporadic in the general population, is relatively frequent in renal stone formers. The physiopathologic mechanism associated with this disease is not fully understood, and omics technologies may help address this gap. SUMMARY: The aim of this review was to provide an overview of the current state of the application of proteomics in the study of this rare disease. In particular, we focused on the results of our recent Italian collaborative studies that, analyzing the MSK whole and extracellular vesicle urinary content by mass spectrometry, have displayed the existence of a large and multifactorial MSK-associated biological machinery and identified some main regulatory biological elements able to discriminate patients affected by this rare disorder from those with idiopathic calcium nephrolithiasis and autosomal dominant polycystic kidney disease (including laminin subunit alpha 2, ficolin 1, mannan-binding lectin serine protease 2, complement component 4-binding protein ß, sphingomyelin, ephrins). KEY MESSAGES: The application of omics technologies has provided new insights into the comprehension of the physiopathology of the MSK disease and identified novel potential diagnostic biomarkers that may replace in future expensive and invasive radiological tests (including CT) and select novel therapeutic targets potentially employable, whether validated in a large cohort of patients, in the daily clinical practice.


Asunto(s)
Vesículas Extracelulares , Cálculos Renales , Riñón Esponjoso Medular , Nefrocalcinosis , Humanos , Riñón Esponjoso Medular/complicaciones , Riñón Esponjoso Medular/patología , Proteómica , Cálculos Renales/patología
8.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628461

RESUMEN

Peritoneal dialysis (PD) represents the dialysis modality of choice for pediatric patients with end-stage kidney disease. Indeed, compared with hemodialysis (HD), it offers many advantages, including more flexibility, reduction of the risk of hospital-acquired infections, preservation of residual kidney function, and a better quality of life. However, despite these positive aspects, PD may be associated with several long-term complications that may impair both patient's general health and PD adequacy. In this view, chronic inflammation, caused by different factors, has a detrimental impact on the structure and function of the peritoneal membrane, leading to sclerosis and consequent PD failure both in adults and children. Although several studies investigated the complex pathogenic pathways underlying peritoneal membrane alterations, these processes remain still to explore. Understanding these mechanisms may provide novel approaches to improve the clinical outcome of pediatric PD patients through the identification of subjects at high risk of complications and the implementation of personalized interventions. In this review, we discuss the main experimental and clinical experiences exploring the potentiality of the proteomic analysis of peritoneal fluids and extracellular vesicles as a source of novel biomarkers in pediatric peritoneal dialysis.


Asunto(s)
Vesículas Extracelulares , Diálisis Peritoneal , Adulto , Biomarcadores , Niño , Humanos , Diálisis Peritoneal/efectos adversos , Proteómica , Calidad de Vida , Diálisis Renal
9.
Rheumatology (Oxford) ; 60(7): 3176-3188, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33374003

RESUMEN

OBJECTIVES: Serum anti-dsDNA and anti-nucleosome IgGs have been proposed as signatures for SLE and LN in limited numbers of patients. We sought to show higher sensitivity and specificity of the same antibodies with the IgG2 isotype and included IgG2 antibodies vs specific intracellular antigens in the analysis. METHODS: A total of 1052 SLE patients with (n = 479) and without (n = 573) LN, recruited at different times from the beginning of symptoms, were included in the study. Patients with primary APS (PAPS, n = 24), RA (RA, n = 24) and UCTD (UCTD, n = 96) were analysed for comparison. Anti-nucleosome (dsDNA, Histone2A, Histone3), anti-intracellular antigens (ENO1), anti-annexin A1 and anti-C1q IgG2 were determined by non-commercial techniques. RESULTS: The presence in the serum of the IgG2 panel was highly discriminatory for SLE/LN vs healthy subjects. Serum levels of anti-dsDNA and anti-C1q IgG2 were more sensitive than those of IgGs (Farr radioimmunoassay/commercial assays) in identifying SLE patients at low-medium increments. Of more importance, serum positivity for anti-ENO1 and anti-H2A IgG2 discriminated between LN and SLE (ROC T0-12 months), and high levels at T0-1 month were detected in 63% and 67%, respectively, of LN, vs 3% and 3%, respectively, of SLE patients; serum positivity for each of these was correlated with high SLEDAI values. Minor differences existed between LN/SLE and the other rheumatologic conditions. CONCLUSION: Nephritogenic IgG2 antibodies represent a specific signature of SLE/LN, with a few overlaps with other rheumatologic conditions. High levels of anti-ENO1 and anti-H2A IgG2 correlated with SLE activity indexes and were discriminatory between SLE patients limited to the renal complication and other SLE patients. TRIAL REGISTRATION: The Zeus study was registered at https://clinicaltrials.gov, NCT02403115.


Asunto(s)
Anticuerpos Antinucleares/inmunología , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/inmunología , Nefritis Lúpica/inmunología , Adolescente , Adulto , Anexina A1/inmunología , Especificidad de Anticuerpos , Síndrome Antifosfolípido/inmunología , Artritis Reumatoide/inmunología , Biomarcadores de Tumor/inmunología , Complemento C1q/inmunología , Estudios Transversales , ADN/inmunología , Proteínas de Unión al ADN/inmunología , Femenino , Histonas/inmunología , Humanos , Masculino , Persona de Mediana Edad , Nucleosomas/inmunología , Fosfopiruvato Hidratasa/inmunología , Proteínas Supresoras de Tumor/inmunología , Enfermedades Indiferenciadas del Tejido Conectivo/inmunología , Adulto Joven
10.
Rheumatology (Oxford) ; 60(7): 3388-3397, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33351137

RESUMEN

OBJECTIVES: Circulating anti-ENO1 and anti-H2A IgG2 have been identified as specific signatures of LN in a cross-over approach. We sought to show whether the same antibodies identify selected population of patients with LN with potentially different clinical outcomes. METHODS: Here we report the prospective analysis over 36 months of circulating IgG2 levels in patients with newly diagnosed LN (n=91) and SLE (n=31) and in other patients with SLE recruited within 2 years from diagnosis (n=99). Anti-podocyte (ENO1), anti-nucleosome (DNA, histone 2 A, histone 3) and anti-circulating proteins (C1q, AnnexinA1-ANXA1) IgG2 antibodies were determined by home-made techniques. RESULTS: LN patients were the main focus of the study. Anti-ENO1, anti-H2A and anti-ANXA1 IgG2 decreased in parallel to proteinuria and normalized within 12 months in the majority of patients while anti-dsDNA IgG2 remained high over the 36 months. Anti-ENO1 and anti-H2A had the highest association with proteinuria (Heat Map) and identified the highest number of patients with high proteinuria (68% and 71% respectively) and/or with reduced estimated glomerula filtration rate (eGFR) (58% for both antibodies) compared with 23% and 17% of anti-dsDNA (agreement analysis). Anti-ENO1 positive LN patients had higher proteinuria than negative patients at T0 and presented the maximal decrement within 12 months. CONCLUSIONS: Anti-ENO1, anti-H2A and anti-ANXA1 antibodies were associated with high proteinuria in LN patients and Anti-ENO1 also presented the maximal reduction within 12 months that paralleled the decrease of proteinuria. Anti-dsDNA were not associated with renal outcome parameters. New IgG2 antibody signatures should be utilized as tracers of personalized therapies in LN. TRIAL REGISTRATION: The Zeus study was registered at https://clinicaltrials.gov (study number: NCT02403115).


Asunto(s)
Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico/inmunología , Nefritis Lúpica/inmunología , Adulto , Anexina A1/inmunología , Anticuerpos Antinucleares/inmunología , Autoanticuerpos/inmunología , Biomarcadores de Tumor/inmunología , Complemento C1q/inmunología , ADN/inmunología , Proteínas de Unión al ADN/inmunología , Progresión de la Enfermedad , Femenino , Histonas/inmunología , Humanos , Masculino , Persona de Mediana Edad , Nucleosomas/inmunología , Fosfopiruvato Hidratasa/inmunología , Estudios Prospectivos , Proteínas Supresoras de Tumor/inmunología
11.
FASEB J ; 34(5): 6322-6334, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32162735

RESUMEN

Maternal nutrition during pregnancy influences offspring health. Dietary supplementation of pregnant women with (n-3) long-chain polyunsaturated fatty acids (PUFA) was shown to exert beneficial effects on offspring, through yet unknown mechanisms. Here, we conducted a dietary intervention study on a cohort of 10 women diagnosed with threatened preterm labor with a nutritional integration with eicosapentaenoic and docosahexaenoic acids. Microvesicles (MV) isolated form arterial cord blood of the treated cohort offspring and also of a randomized selection of 10 untreated preterm and 12 term newborns, were characterized by dynamic light scattering and analyzed by proteomic and statistical analysis. Glutathione synthetase was the protein bearing the highest discrimination ability between cohorts. ELISA assay showed that glutathione synthetase was more abundant in cord blood from untreated preterm compared to the other conditions. Assay of free SH-groups showed that serum of preterm subjects was oxidized. Data suggest that preterm suffer from oxidative stress, which was lower in the treated cohort. This study confirms that MV are a representative sample of the individual status and the efficacy of dietary intervention with PUFA in human pregnancy in terms of lowered inflammatory status, increased gestational age and weight at birth.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Trabajo de Parto Prematuro/prevención & control , Nacimiento Prematuro/dietoterapia , Proteoma/análisis , Adulto , Femenino , Edad Gestacional , Humanos , Recién Nacido , Fenómenos Fisiologicos Nutricionales Maternos , Trabajo de Parto Prematuro/metabolismo , Embarazo , Nacimiento Prematuro/metabolismo , Nacimiento Prematuro/patología , Proteoma/metabolismo , Adulto Joven
12.
Expert Rev Proteomics ; 17(10): 735-749, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33395324

RESUMEN

Introduction: Exosomes are nanovesicles that play important functions in a variety of physiological and pathological conditions. They are powerful cell-to-cell communication tool thanks to the protein, mRNA, miRNA, and lipid cargoes they carry. They are also emerging as valuable diagnostic and prognostic biomarker sources. Urinary exosomes carry information from all the cells of the urinary tract, downstream of the podocyte. Rare kidney diseases are a subset of an inherited diseases whose genetic diagnosis can be unclear, and presentation can vary due to genetic, epigenetic, and environmental factors. Areas covered: In this review, we focus on a group of rare and often neglected kidney diseases, for which we have sufficient available literature data on urinary exosomes. The analysis of their content can help to comprehend pathological mechanisms and to identify biomarkers for diagnosis, prognosis, and therapeutic targets. Expert opinion: The foreseeable large-scale application of system biology approach to the profiling of exosomal proteins as a source of renal disease biomarkers will be also useful to stratify patients with rare kidney diseases whose penetrance, phenotypic presentation, and age of onset vary sensibly. This can ameliorate the clinical management.


Asunto(s)
Exosomas/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/orina , Biomarcadores/orina , Humanos , MicroARNs/orina , ARN Mensajero/orina , Biología de Sistemas/métodos
13.
Kidney Int ; 96(4): 971-982, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31285081

RESUMEN

The clinical heterogeneity of idiopathic nephrotic syndrome in childhood may reflect different mechanisms of disease that are as yet unclear. Here, we evaluated the association between an atypical presence of IgM on the surface of T cells (T-cell IgM) and the response to steroid therapy in a total of 153 pediatric patients with idiopathic nephrotic syndrome in different phases of disease. At disease onset, T-cell IgM median levels were significantly elevated and predictive of risk of relapse in 47 patients. They were also significantly increased comparing 58 steroid-dependent to 8 infrequently relapsing and 14 frequently relapsing patients, especially during relapse, whereas they were within the normal range in 7 genetic steroid-resistant patients. T-cell IgM in vivo was not affected by the amount of total circulating IgM, nor by concomitant acute infections or oral immunosuppression. However, it was affected by rituximab treatment in 21 steroid-dependent patients. By in vitro experiments, elevated T-cell IgM was not influenced by total circulating IgM levels or by the presence of other circulating factors, and there was no distinctive antigen-specificity or atypical IgM polymerization. Rather, we found that increased T-cell IgM correlates with reduced IgM sialylation, which influences T-cell response to steroid inhibition and T-cell production of podocyte-damaging factors. Thus, the atypical presence of IgM on the surface of T cells may predispose a subset of steroid-sensitive pediatric patients with idiopathic nephrotic syndrome to a poor response to steroid therapy since disease onset.


Asunto(s)
Glucocorticoides/farmacología , Inmunoglobulina M/metabolismo , Síndrome Nefrótico/tratamiento farmacológico , Linfocitos T/inmunología , Adolescente , Niño , Preescolar , Resistencia a Medicamentos/genética , Quimioterapia Combinada/métodos , Femenino , Estudios de Seguimiento , Glucocorticoides/uso terapéutico , Humanos , Inmunoglobulina M/análisis , Inmunoglobulina M/inmunología , Lactante , Masculino , Síndrome Nefrótico/sangre , Síndrome Nefrótico/genética , Síndrome Nefrótico/inmunología , Podocitos , Estudios Prospectivos , Recurrencia , Rituximab/farmacología , Rituximab/uso terapéutico , Ácidos Siálicos/metabolismo , Linfocitos T/metabolismo , Resultado del Tratamiento
14.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694344

RESUMEN

Medullary sponge kidney (MSK) disease is a rare and neglected kidney condition often associated with nephrocalcinosis/nephrolithiasis and cystic anomalies in the precalyceal ducts. Little is known about the pathogenesis of this disease, so we addressed the knowledge gap using a proteomics approach. The protein content of microvesicles/exosomes isolated from urine of 15 MSK and 15 idiopathic calcium nephrolithiasis (ICN) patients was investigated by mass spectrometry, followed by weighted gene coexpression network analysis, support vector machine (SVM) learning, and partial least squares discriminant analysis (PLS-DA) to select the most discriminative proteins. Proteomic data were verified by ELISA. We identified 2998 proteins in total, 1764 (58.9%) of which were present in both vesicle types in both diseases. Among the MSK samples, only 65 (2.2%) and 137 (4.6%) proteins were exclusively found in the microvesicles and exosomes, respectively. Similarly, among the ICN samples, only 75 (2.5%) and 94 (3.1%) proteins were exclusively found in the microvesicles and exosomes, respectively. SVM learning and PLS-DA revealed a core panel of 20 proteins that distinguished extracellular vesicles representing each clinical condition with an accuracy of 100%. Among them, three exosome proteins involved in the lectin complement pathway maximized the discrimination between MSK and ICN: Ficolin 1, Mannan-binding lectin serine protease 2, and Complement component 4-binding protein ß. ELISA confirmed the proteomic results. Our data show that the complement pathway is involved in the MSK, revealing a new range of potential therapeutic targets and early diagnostic biomarkers.


Asunto(s)
Proteínas del Sistema Complemento/análisis , Vesículas Extracelulares/patología , Riñón Esponjoso Medular/orina , Proteínas/análisis , Adulto , Exosomas/química , Exosomas/patología , Vesículas Extracelulares/química , Femenino , Humanos , Masculino , Riñón Esponjoso Medular/patología , Nefrolitiasis/patología , Nefrolitiasis/orina , Proteómica
15.
J Proteome Res ; 17(2): 918-925, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29299929

RESUMEN

The retinal rod outer segment (OS) is a stack of disks surrounded by the plasma membrane, housing proteins related to phototransduction, as well as mitochondrial proteins involved in oxidative phosphorylation (OxPhos). This prompted us to compare the proteome of bovine OS disks and mitochondria to assess the significant top gene signatures of each sample. The two proteomes, obtained by LTQ-Orbitrap Velos mass spectrometry, were compared by statistical analyses. In total, 4139 proteins were identified, 2045 of which overlapping in the two sets. Nonhierarchical Spearman's correlogram revealed that the groups were clearly discriminated. Partial least square discriminant plus support vector machine analysis identified the major discriminative proteins, implied in phototransduction and lipid metabolism, respectively. Gene Ontology analysis identified top gene signatures of the disk proteome, enriched in vesiculation, glycolysis, and OxPhos proteins. The tricarboxylic acid cycle and the electron transport proteins were similarly enriched in the two samples, but the latter was up regulated in disks. Data suggest that the mitochondrial OxPhos proteins may represent a true OS proteome component, outside the mitochondrion. This knowledge may help the scientific community in the further studies of retinal physiology and pathology.


Asunto(s)
Proteínas del Ojo/aislamiento & purificación , Mitocondrias/genética , Proteínas Mitocondriales/aislamiento & purificación , Proteoma/aislamiento & purificación , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Bovinos , Cromatografía Liquida , Ciclo del Ácido Cítrico/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Ontología de Genes , Glucólisis/genética , Análisis de los Mínimos Cuadrados , Fototransducción , Metabolismo de los Lípidos/genética , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Anotación de Secuencia Molecular , Fosforilación Oxidativa , Proteoma/genética , Proteoma/metabolismo , Segmento Externo de la Célula en Bastón/ultraestructura , Máquina de Vectores de Soporte , Espectrometría de Masas en Tándem
16.
Expert Rev Proteomics ; 15(10): 801-808, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30253662

RESUMEN

INTRODUCTION: Shed by most cells, in response to a myriad of stimuli, extracellular vesicles (EVs) carry proteins, lipids, and various nucleic acids. EVs encompass diverse subpopulations differing for biogenesis and content. Among these, microvesicles (MVs) derived from plasma membrane, are key regulators of physiopathological cellular processes including cancer, inflammation and infection. This review is unique in that it focuses specifically on the MVs as a mediator of information transfer. In fact, few proteomic studies have rigorously distinguished MVs from exosomes. Areas covered: Aim of this review is to discuss the proteomic analyses of the MVs. Many studies have examined mixed populations containing both exosomes and MVs. We discuss MVs' role in cell-specific interactions. We also show their emerging roles in therapy and diagnosis. Expert commentary: We see MVs as therapeutic tools for potential use in precision medicine. They may also have potential for allowing the identification of new biomarkers. MVs represent an invaluable tool for studying the cell of origin, which they closely represent, but it is critical to build a repository with data from MVs to deepen our understanding of their molecular repertoire and biological functions.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Vesículas Extracelulares/metabolismo , Medicina de Precisión/métodos , Proteómica/métodos , Animales , Humanos , Espectrometría de Masas/métodos
18.
Int J Mol Sci ; 19(5)2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29751523

RESUMEN

Annexin A1 is a protein with multifunctional roles in innate and adaptive immunity mainly devoted to the regulation of inflammatory cells and the resolution of inflammation. Most of the data regarding Annexin A1 roles in immunity derive from cell studies and from mice models lacking Annexin A1 for genetic manipulation (Annexin A1-/-); only a few studies sought to define how Annexin A1 is involved in human diseases. High levels of anti-Annexin A1 autoantibodies have been reported in systemic lupus erythematosus (SLE), suggesting this protein is implicated in auto-immunity. Here, we reviewed the evidence available for an association of anti-Annexin A1 autoantibodies and SLE manifestations, in particular in those cases complicated by lupus nephritis. New studies show that serum levels of Annexin A1 are increased in patients presenting renal complications of SLE, but this increment does not correlate with circulating anti-Annexin A1 autoantibodies. On the other hand, high circulating Annexin A1 levels cannot explain per se the development of autoantibodies since post-translational modifications are necessary to make a protein immunogenic. A hypothesis is presented here and discussed regarding the possibility that Annexin A1 undergoes post-translational modifications as a part of neutrophil extracellular traps (NETs) that are produced in response to viral, bacterial, and/or inflammatory triggers. In particular, focus is on the process of citrullination of Annexin A1, which takes place within NETs and that mimics, to some extent, other autoimmune conditions, such as rheumatoid arthritis, that are characterized by the presence of anti-citrullinated peptides in circulation. The description of pathologic pathways leading to modification of Annexin A1 as a trigger of autoimmunity is a cognitive evolution, but requires more experimental data before becoming a solid concept for explaining autoimmunity in human beings.


Asunto(s)
Anexina A1/metabolismo , Autoinmunidad/fisiología , Neutrófilos/metabolismo , Animales , Anexina A1/genética , Autoanticuerpos/inmunología , Autoanticuerpos/metabolismo , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Nefritis Lúpica/inmunología , Nefritis Lúpica/metabolismo
19.
Hum Mutat ; 38(7): 849-862, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28477385

RESUMEN

The transfer of genomic information into the primary RNA sequence can be altered by RNA editing. We have previously shown that genomic variants can be RNA-edited to wild-type. The presence of distinct "edited" iduronate 2-sulfatase (IDS) mRNA transcripts ex vivo evidenced the correction of a nonsense and frameshift variant, respectively, in three unrelated Hunter syndrome patients. This phenomenon was confirmed in various patient samples by a variety of techniques, and was quantified by single-nucleotide primer extension. Western blotting also confirmed the presence of IDS protein similar in size to the wild-type. Since preliminary experimental evidence suggested that the "corrected" IDS proteins produced by the patients were similar in molecular weight and net charge to their wild-type counterparts, an in vitro system employing different cell types was established to recapitulate the site-specific editing of IDS RNA (uridine to cytidine conversion and uridine deletion), and to confirm the findings previously observed ex vivo in the three patients. In addition, confocal microscopy and flow cytometry analyses demonstrated the expression and lysosomal localization in HEK293 cells of GFP-labeled proteins translated from edited IDS mRNAs. Confocal high-content analysis of the two patients' cells expressing wild-type or mutated IDS confirmed lysosomal localization and showed no accumulation in the Golgi or early endosomes.


Asunto(s)
Glicoproteínas/genética , Mucopolisacaridosis II/genética , Mutación , ARN Mensajero/genética , Secuencia de Bases , Codón sin Sentido , Biología Computacional , Exones , Mutación del Sistema de Lectura , Variación Genética , Vectores Genéticos , Genoma Humano , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Hemicigoto , Humanos , Lisosomas/metabolismo , Masculino , Biosíntesis de Proteínas , Edición de ARN
20.
Kidney Int ; 91(2): 459-468, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27914711

RESUMEN

Medullary sponge kidney (MSK) disease, a rare kidney malformation featuring recurrent renal stones and nephrocalcinosis, continues to be diagnosed using expensive and time-consuming clinical/instrumental tests (mainly urography). Currently, no molecular diagnostic biomarkers are available. To identify such we employed a proteomic-based research strategy utilizing urine from 22 patients with MSK and 22 patients affected by idiopathic calcium nephrolithiasis (ICN) as controls. Notably, two patients with ICN presented cysts. In the discovery phase, the urine of 11 MSK and 10 controls, were randomly selected, processed, and analyzed by mass spectrometry. Subsequently, several statistical algorithms were undertaken to select the most discriminative proteins between the two study groups. ELISA, performed on the entire patients' cohort, was used to validate the proteomic results. After an initial statistical analysis, 249 and 396 proteins were identified exclusive for ICN and MSK, respectively. A Volcano plot and ROC analysis, performed to restrict the number of MSK-associated proteins, indicated that 328 and 44 proteins, respectively, were specific for MSK. Interestingly, 119 proteins were found to differentiate patients with cysts (all patients with MSK and the two ICN with renal cysts) from ICN without cysts. Eventually, 16 proteins were found to be common to three statistical methods with laminin subunit alpha 2 (LAMA-2) reaching the higher rank by a Support Vector Machine, a binary classification/prediction scheme. ELISA for LAMA-2 validated proteomic results. Thus, using high-throughput technology, our study identified a candidate MSK biomarker possibly employable in future for the early diagnosis of this disease.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Laminina/orina , Riñón Esponjoso Medular/orina , Proteómica/métodos , Algoritmos , Área Bajo la Curva , Biomarcadores/orina , Estudios de Casos y Controles , Análisis por Conglomerados , Análisis Discriminante , Diagnóstico Precoz , Ensayo de Inmunoadsorción Enzimática , Humanos , Riñón Esponjoso Medular/diagnóstico , Valor Predictivo de las Pruebas , Curva ROC , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte , Espectrometría de Masas en Tándem , Urinálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA