Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072544

RESUMEN

The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/metabolismo , Susceptibilidad a Enfermedades , Eritrocitos/metabolismo , Animales , Aterosclerosis/patología , Biomarcadores , Citofagocitosis , Progresión de la Enfermedad , Membrana Eritrocítica/inmunología , Membrana Eritrocítica/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Hemólisis , Humanos , Estrés Oxidativo
2.
Biochim Biophys Acta ; 1862(6): 1137-46, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26972048

RESUMEN

RATIONALE: The role of macrophage iron in the physiopathology of atherosclerosis is an open question that needs to be clarified. In atherosclerotic lesions, recruited macrophages are submitted to cytokines and oxidized lipids which influence their phenotype. An important phenotypic population driven by oxidized phospholipids is the Mox macrophages which present unique biological properties but their iron phenotype is not well described. OBJECTIVE: To investigate the effect of Mox polarization by oxidized LDL (oxLDL) on macrophage iron metabolism in the absence or presence of proinflammatory stimuli. METHODS: Bone marrow-derived macrophages were treated with different sources of LDL and/or LPS/IFNγ (M1 activator). Expression of ferroportin (Slc40a1, alias Fpn), heme oxygenase-1 (Hmox1), H- and L-ferritin (Fth1 and Ftl1), hepcidin (Hamp), ceruloplasmin (Cp) and interleukine-6 (Il6) was followed by quantitative PCR. FPN and HMOX1 protein expression was analyzed by immunofluorescence and in-cell-Western blotting. RESULTS: Mox macrophages expressed increased Hmox1 and Fth1 levels with basal FPN protein levels despite the significant increase of Fpn mRNA. Upregulation of Hmox1 and Fpn mRNA was specific to LDL oxidative modification and mediated by NRF2. The downregulation of both Cp isoforms and the upregulation of Hamp expression observed in Mox macrophages suggest that FPN mediated iron export could be compromised. Simultaneous exposure to oxLDL and LPS/IFNγ leads to a mixed Mox/M1 phenotype that is closer to M1. CONCLUSION: A microenvironment rich in oxLDL and proinflammatory cytokines could promote macrophage iron retention and lipid accumulation profiles, a specific cell phenotype that likely contributes to lesion development and plaque instability in atherosclerosis.


Asunto(s)
Hierro/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Transcriptoma , Acetilación , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proteínas de Transporte de Catión/genética , Células Cultivadas , Hemo-Oxigenasa 1/genética , Humanos , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Regulación hacia Arriba
3.
FASEB J ; 30(1): 252-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26370847

RESUMEN

The amount of iron in the diet directly influences the composition of the microbiota. Inversely, the effects of the microbiota on iron homeostasis have been little studied. So, we investigate whether the microbiota itself may alter host iron sensing. Duodenal cytochrome b and divalent metal transporter 1, involved in apical iron uptake, are 8- and 10-fold, respectively, more abundant in the duodenum of germ-free (GF) mice than in mice colonized with a microbiota. In contrast, the luminal exporter ferroportin is 2-fold less abundant in GF. The overall signature of microbiota on iron-related proteins is similar in the colon. The colonization does not modify systemic parameters as plasma transferrin saturation (20%), plasma ferritin (150 ng/L), and liver (85 µg/g) iron load. Commensal organisms (Bacteroides thetaiotaomicron VPI-5482 and Faecalibacterium prausnitzii A2-165) and a probiotic strain (Streptococcus thermophilus LMD-9) led to up to 12-fold induction of ferritin in colon. Our data suggest that the intestinal cells of GF mice are depleted of iron and that following colonization, the epithelial cells favor iron storage. This study is the first to demonstrate that gut microbes induce a specific iron-related protein signature, highlighting new aspects of the crosstalk between the microbiota and the intestinal epithelium.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Mucosa Intestinal/metabolismo , Hierro/metabolismo , Microbiota , Animales , Proteínas de Transporte de Catión/genética , Colon/metabolismo , Colon/microbiología , Citocromos b/genética , Citocromos b/metabolismo , Duodeno/metabolismo , Duodeno/microbiología , Ferritinas/sangre , Mucosa Intestinal/microbiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Hepatology ; 59(2): 683-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23907767

RESUMEN

UNLABELLED: Gender-related disparities in the regulation of iron metabolism may contribute to the differences exhibited by men and women in the progression of chronic liver diseases associated with reduced hepcidin expression, e.g., chronic hepatitis C, alcoholic liver disease, or hereditary hemochromatosis. However, their mechanisms remain poorly understood. In this study we took advantage of the major differences in hepcidin expression and tissue iron loading observed between Bmp6-deficient male and female mice to investigate the mechanisms underlying this sexual dimorphism. We found that testosterone robustly represses hepcidin transcription by enhancing Egfr signaling in the liver and that selective epidermal growth factor receptor (Egfr) inhibition by gefitinib (Iressa) in males markedly increases hepcidin expression. In males, where the suppressive effects of testosterone and Bmp6-deficiency on hepcidin expression are combined, hepcidin is more strongly repressed than in females and iron accumulates massively not only in the liver but also in the pancreas, heart, and kidneys. CONCLUSION: Testosterone-induced repression of hepcidin expression becomes functionally important during homeostatic stress from disorders that result in iron loading and/or reduced capacity for hepcidin synthesis. These findings suggest that novel therapeutic strategies targeting the testosterone/EGF/EGFR axis may be useful for inducing hepcidin expression in patients with iron overload and/or chronic liver diseases.


Asunto(s)
Receptores ErbB/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Factores Sexuales , Transducción de Señal/fisiología , Testosterona/metabolismo , Animales , Proteína Morfogenética Ósea 6/deficiencia , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Proteínas de Transporte de Catión/metabolismo , Femenino , Homeostasis/fisiología , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocardio/metabolismo , Páncreas/metabolismo , Proteínas Smad/metabolismo
5.
Biochem J ; 449(1): 69-78, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22992020

RESUMEN

HO1 (haem oxygenase 1) and Fpn (ferroportin) are key proteins for iron recycling from senescent red blood cells and therefore play a major role in controlling the bioavailability of iron for erythropoiesis. Although important aspects of iron metabolism in HO1-deficient (Hmox1-/-) mice have already been revealed, little is known about the regulation of Fpn expression and its role in HO1 deficiency. In the present study, we characterize the cellular and systemic factors influencing Fpn expression in Hmox1-/- bone marrow-derived macrophages and in the liver and kidney of Hmox1-/- mice. In Hmox1-/- macrophages, Fpn protein was relatively highly expressed under high levels of hepcidin in culture medium. Similarly, despite high hepatic hepcidin expression, Fpn is still detected in Kupffer cells and is also markedly enhanced at the basolateral membrane of the renal tubules of Hmox1-/- mice. Through the activity of highly expressed Fpn, epithelial cells of the renal tubules probably take over the function of impaired system of tissue macrophages in recycling iron accumulated in the kidney. Moreover, although we have found increased expression of FLVCR (feline leukaemia virus subgroup C receptor), a haem exporter, in the kidneys of Hmox1-/- mice, haem level was increased in these organs. Furthermore, we show that iron/haem-mediated toxicity are responsible for renal injury documented in the kidneys of Hmox1-/- mice.


Asunto(s)
Lesión Renal Aguda/metabolismo , Proteínas de Transporte de Catión/biosíntesis , Regulación de la Expresión Génica , Hemo-Oxigenasa 1/deficiencia , Riñón/metabolismo , Proteínas de la Membrana/deficiencia , Lesión Renal Aguda/genética , Animales , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/metabolismo , Proteínas de Transporte de Catión/genética , Células Cultivadas , Femenino , Hemo/toxicidad , Hemo-Oxigenasa 1/genética , Hierro/toxicidad , Riñón/enzimología , Macrófagos/enzimología , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Gut Microbes ; 16(1): 2361660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935764

RESUMEN

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Asunto(s)
Proteínas de Transporte de Catión , Duodeno , Microbioma Gastrointestinal , Hepcidinas , Hierro de la Dieta , Hígado , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Hierro de la Dieta/metabolismo , Hierro de la Dieta/administración & dosificación , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Hígado/metabolismo , Hígado/microbiología , Duodeno/metabolismo , Duodeno/microbiología , Hepcidinas/metabolismo , Ferritinas/metabolismo , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Pulmón/microbiología , Pulmón/metabolismo , Hierro/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Ratones Endogámicos C57BL , Hemoglobinas/metabolismo , Masculino
7.
Blood Cells Mol Dis ; 48(2): 110-20, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22178061

RESUMEN

BACKGROUND: Ceruloplasmin is a positive acute-phase protein with both anti- and pro-oxidant activities, thus having still unclear physiological functions in inflammatory processes. Importantly, ceruloplasmin has been implicated in iron metabolism due to its ferroxidase activity, assisting ferroportin on cellular iron efflux. Ceruloplasmin can be expressed as a secreted or as a membrane glycosylphosphatidylinositol-anchored protein (GPI-ceruloplasmin), this latter one being reported as expressed mostly in the brain. DESIGN AND METHODS: We studied the expression of both ceruloplasmin isoforms in human peripheral blood lymphocytes, monocytes, mouse macrophages and human hepatocarcinoma cell line HepG2, using immunofluorescence and immunoblotting techniques. Co-localization of ceruloplasmin and ferroportin was also investigated by immunofluorescence in mouse macrophages. RESULTS: Ceruloplasmin was detected by immunoblotting and immunofluorescence in membrane and cytosol of all cell types. The cell surface ceruloplasmin was identified as the GPI-isoform and localized in lipid rafts from monocytes, macrophages and HepG2 cells. In macrophages, increased expression levels and co-localization of ferroportin and GPI-ceruloplasmin in cell surface lipid rafts were observed after iron treatment. Such iron upregulation of ceruloplasmin was not observed in HepG2. CONCLUSIONS: Our results revealed an unexpected ubiquitous expression of the GPI-ceruloplasmin isoform in immune and hepatic cells. Different patterns of regulation of ceruloplasmin in these cells may reflect distinct physiologic functions of this oxidase. In macrophages, GPI-ceruloplasmin and ferroportin likely interact in lipid rafts to export iron from cells. Precise knowledge about ceruloplasmin isoforms expression and function in various cell types will help to clarify the role of ceruloplasmin in many diseases related to iron metabolism, inflammation and oxidative biology.


Asunto(s)
Ceruloplasmina/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Hepatocitos/metabolismo , Linfocitos/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Animales , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Células Cultivadas , Humanos , Hierro/metabolismo , Isoenzimas/metabolismo , Microdominios de Membrana/metabolismo , Ratones
8.
Biochimie ; 202: 166-179, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35952949

RESUMEN

Red blood cells (RBC) are the most abundant circulating cell of the human body. RBC are constantly exposed to multiple stresses in the circulation, leading to molecular and structural impairments and death. The physiological process of RBC senescence or ageing is referred to as eryptosis. At the end of their lifespan, aged RBC are recognized and removed from the blood by professional phagocytes via a phenomenon called erythrophagocytosis (EP); the phagocytosis of RBC. Some genetic and acquired diseases can influence eryptosis, thereby affecting RBC lifespan and leading to hemolytic anemia. In some diseases, such as diabetes and atherosclerosis, eryptosis and EP can participate in disease progression with both professional and non-professional phagocytes. Therefore, investigating the process of EP in vivo and in vitro, as well as in different cell types, will not only contribute to the understanding of the physiological steps of EP, but also to the deciphering of the specific mechanisms involving RBC and EP that underlie certain pathologies. In this review, the process of EP is introduced and the different methods for studying EP are discussed together with examples of the experimental procedures and materials required.


Asunto(s)
Aterosclerosis , Eritrocitos , Humanos , Anciano , Fagocitosis , Envejecimiento , Progresión de la Enfermedad
9.
Biochim Biophys Acta ; 1802(3): 339-46, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20045050

RESUMEN

Venesection has been proposed as a treatment for hepatic iron overload in a number of chronic liver disorders that are not primarily linked to mutations in iron metabolism genes. Our aim was to analyse the impact of venesection on iron mobilisation in a mouse model of secondary iron overload. C57Bl/6 mice were given oral iron supplementation with or without phlebotomy between day 0 (D0) and D22, and the results were compared to controls without iron overload. We studied serum and tissue iron parameters, mRNA levels of hepcidin1, ferroportin, and transferrin receptor 1, and protein levels of ferroportin in the liver and spleen. On D0, animals with iron overload displayed elevations in iron parameters and hepatic hepcidin1 mRNA. By D22, in the absence of phlebotomies, splenic iron had increased, but transferrin saturation had decreased. This was associated with high hepatic hepcidin1 mRNA, suggesting that iron bioavailability decreased due to splenic iron sequestration through ferroportin protein downregulation. After 22days with phlebotomy treatments, control mice displayed splenic iron mobilisation that compensated for the iron lost due to phlebotomy. In contrast, phlebotomy treatments in mice with iron overload caused anaemia due to inadequate iron mobilisation. In conclusion, our model of secondary iron overload led to decreased plasma iron associated with an increase in hepcidin expression and subsequent restriction of iron export from the spleen. Our data support the importance of managing hepcidin levels before starting venesection therapy in patients with secondary iron overload that are eligible for phlebotomy.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/terapia , Hierro/farmacocinética , Bazo/metabolismo , Animales , Western Blotting , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Modelos Animales de Enfermedad , Hepcidinas , Hierro/sangre , Sobrecarga de Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Flebotomía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/patología , Distribución Tisular
10.
Am J Pathol ; 177(3): 1233-43, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20805566

RESUMEN

Iron deficiency is a common health problem. The most severe consequence of this disorder is iron deficiency anemia (IDA), which is considered the most common nutritional deficiency worldwide. Newborn piglets are an ideal model to explore the multifaceted etiology of IDA in mammals, as IDA is the most prevalent deficiency disorder throughout the early postnatal period in this species and frequently develops into a critical illness. Here, we report the very low expression of duodenal iron transporters in pigs during the first days of life. We postulate that this low expression level is why the iron demands of the piglet body are not met by iron absorption during this period. Interestingly, we found that a low level of duodenal divalent metal transporter 1 and ferroportin, two iron transporters located on the apical and basolateral membrane of duodenal absorptive enterocytes, respectively, correlates with abnormally high expression of hepcidin, despite the poor hepatic and overall iron status of these animals. Parenteral iron supplementation by a unique intramuscular administration of large amounts of iron dextran is current practice for the treatment of IDA in piglets. However, the potential toxicity of such supplemental iron implies the necessity for caution when applying this treatment. Here we demonstrate that a modified strategy for iron supplementation of newborn piglets with iron dextran improves the piglets' hematological status, attenuates the induction of hepcidin expression, and minimizes the toxicity of the administered iron.


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Duodeno/metabolismo , Mucosa Intestinal/metabolismo , Hierro de la Dieta/uso terapéutico , Análisis de Varianza , Anemia Ferropénica/sangre , Anemia Ferropénica/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Recuento de Eritrocitos , Inmunohistoquímica , Hierro de la Dieta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas , Porcinos
11.
Blood ; 113(8): 1841-4, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19109230

RESUMEN

Iron overload is common in patients undergoing allogeneic hematopoietic cell transplantation (HCT), but the mechanisms leading to overload are unknown. Here, we determined iron levels and the expression of iron regulatory proteins in the liver and gut of nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice that underwent transplantation with syngeneic (histocompatible) or allogeneic (histoincompatible) T lymphocytes. Infusion of histoincompatible T cells resulted in a significant rise in serum iron levels and liver iron content. Iron deposition was accompanied by hepatocyte injury and intestinal villous damage. Feeding of low- or high-iron diet was associated with appropriate ferroportin 1 and hepcidin responses in mice given histocompatible T cells, whereas mice given histoincompatible T cells showed inappropriate up-regulation of duodenal ferroportin 1 and a loss of expression of hepatic hepcidin. These findings suggest that alloreactive T cell-dependent signals induced dysregulation of intestinal iron absorption, which contributed to liver iron overload after HCT.


Asunto(s)
Traslado Adoptivo/efectos adversos , Homeostasis/inmunología , Sobrecarga de Hierro/inmunología , Hierro/metabolismo , Linfocitos T/trasplante , Animales , Apoproteínas/metabolismo , Sobrecarga de Hierro/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/metabolismo , Transferrina/metabolismo , Trasplante Homólogo
12.
Haematologica ; 95(8): 1269-77, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20220061

RESUMEN

BACKGROUND: Expression of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and is decreased by hepcidin. We previously showed that ferroportin is present in specific cell surface domains suggestive of lipid rafts. Herein, we have clarified the localization of ferroportin in macrophage membranes and tested whether raft-mediated endocytosis plays a role in hepcidin activity. DESIGN AND METHODS: Raft/detergent-resistant membranes from murine bone marrow-derived macrophages and J774a1 cells were analyzed by Western blotting. The effect of lipid raft- or clathrin-dependent endocytosis inhibitors was studied on hepcidin activity. For this purpose, after treatment, ferroportin expression was analyzed by fluorescence microscopy, Western blotting of total protein extracts or plasma membrane protein samples, and by quantitative immunofluorescence assay (In-Cell-Western). RESULTS: Macrophage ferroportin was mostly detected in detergent-resistant membranes containing raft markers (caveolin 1, flotillin 1). Interestingly, iron overload strongly increased the presence of ferroportin in the lightest raft fraction. Moreover, lipid raft breakdown by cholesterol sequestration (filipin) or depletion (methyl-beta-cyclodextrin) decreased hepcidin activity on macrophage ferroportin. Cell surface biotinylation and immunofluorescence studies indicated that the process of both hepcidin mediated endocytosis and degradation of ferroportin were affected. By contrast, the inhibition of clathrin dependent endocytosis did not interfere with hepcidin effect. CONCLUSIONS: Macrophage ferroportin is present in lipid rafts which contribute to hepcidin activity. These observations reveal the existence of a new cellular pathway in hepcidin mediated degradation of ferroportin and open a new area of investigation in mammalian iron homeostasis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Transporte de Catión/metabolismo , Endocitosis , Macrófagos/efectos de los fármacos , Microdominios de Membrana/metabolismo , Animales , Western Blotting , Caveolina 1/metabolismo , Línea Celular , Células Cultivadas , Toxina del Cólera/metabolismo , Compuestos Férricos/farmacología , Filipina/farmacología , Hepcidinas , Macrófagos/citología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos DBA , Microscopía Fluorescente , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/farmacología , Transferrina/metabolismo
13.
Haematologica ; 95(3): 501-4, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19773263

RESUMEN

Hepcidin, a circulating regulatory hormone peptide produced by hepatocytes, functions as the master regulator of cellular iron export by controlling the amount of ferroportin, an iron exporter present on the basolateral surface of intestinal enterocytes and macrophages. Hepcidin binding to ferroportin induces its internalization and degradation, resulting in cellular iron retention and decreased iron export. Whether hepatocytes express ferroportin that could be targeted by hepcidin has remained a subject of debate. Here, we describe a hepatocyte culture system expressing high levels of ferroportin, and demonstrate that both endogenously secreted and synthetic hepcidin are fully active in down-regulating membrane-associated ferroportin. In agreement with this result, ferroportin is stabilized in liver hepatocytes of hepcidin-deficient mice and accumulates in periportal areas, supporting the centrolobular iron deposition observed in these mice. In conclusion, we show that hepcidin can trigger ferroportin degradation in hepatocytes, which must be taken into account when considering hepcidin therapeutics.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/fisiología , Proteínas de Transporte de Catión/metabolismo , Hepatocitos/metabolismo , Hierro/metabolismo , Animales , Western Blotting , Proteínas de Transporte de Catión/genética , Femenino , Hepatocitos/citología , Hepcidinas , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Biochem J ; 420(3): 383-90, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19296829

RESUMEN

The continuous recycling of haem iron following phagocytosis and catabolism of senescent and damaged red blood cells by macrophages is a crucial process in the maintenance of systemic iron homoeostasis. However, little is known about macrophage iron handling in haemolytic states resulting from a deficiency in antioxidant defences. Our observations indicate that the recently described chronic, but moderate regenerative, haemolytic anaemia of aged SOD1 (superoxide dismutase 1)-knockout mice is associated with red blood cell modifications and sensitivity to both intra- and extra-vascular haemolysis. In the present study, we have characterized the molecular pathways of iron turnover in the liver of Sod1-deficient mice. Despite iron accumulation in liver macrophages, namely Kupffer cells, we did not measure any significant change in non-haem liver iron. Interestingly, in Kupffer cells, expression of the rate-limiting enzyme in haem degradation, haem oxygenase-1, and expression of the iron exporter ferroportin were both up-regulated, whereas the hepcidin mRNA level in the liver was decreased in Sod1-/- mice. These results suggest that concerted changes in the hepatic expression of iron- and haem-related genes in response to haemolytic anaemia in Sod1-/- mice act to reduce toxic iron accumulation in the liver and respond to the needs of erythropoiesis.


Asunto(s)
Anemia Hemolítica/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Superóxido Dismutasa/deficiencia , Envejecimiento , Anemia Hemolítica/sangre , Anemia Hemolítica/patología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Western Blotting , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Hemo/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hemoglobinas/metabolismo , Hemólisis , Hepcidinas , Hierro/sangre , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética
15.
Biochem J ; 411(1): 123-31, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18072938

RESUMEN

Tissue macrophages play an essential role in iron recycling through the phagocytosis of senescent RBCs (red blood cells). Following haem catabolism by HO1 (haem oxygenase 1), they recycle iron back into the plasma through the iron exporter Fpn (ferroportin). We previously described a cellular model of EP (erythrophagocytosis), based on primary cultures of mouse BMDMs (bone-marrow-derived macrophages) and aged murine RBCs, and showed that EP induces changes in the expression profiles of Fpn and HO1. In the present paper, we demonstrate that haem derived from human or murine RBCs or from an exogenous source of haem led to marked transcriptional activation of the Fpn and HO1 genes. Iron released from haem catabolism subsequently stimulated the Fpn mRNA and protein expression associated with localization of the transporter at the cell surface, which probably promotes the export of iron into the plasma. These findings highlight a dual mechanism of Fpn regulation in BMDMs, characterized by early induction of the gene transcription predominantly mediated by haem, followed by iron-mediated post-transcriptional regulation of the exporter.


Asunto(s)
Proteínas de Transporte de Catión/genética , Eritrocitos/citología , Regulación de la Expresión Génica , Macrófagos/fisiología , Fagocitosis , Animales , Técnicas de Cocultivo , Envejecimiento Eritrocítico , Hemo/fisiología , Hierro/metabolismo , Hierro/fisiología , Ratones , Biosíntesis de Proteínas , ARN Mensajero/genética , Transcripción Genética
16.
Exp Hematol ; 36(10): 1227-35, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18722041

RESUMEN

OBJECTIVE: We investigated mechanisms involved in iron (Fe) transport by DMT1 (endosomal Fe(II) exporter, encoded by the Nramp2 gene) using wild-type Chinese hamster ovary (CHO) cells and Nramp2-transfected CHO cells, as well as reticulocytes from normal and mk/mk mice that have a defect in DMT1. MATERIALS AND METHODS: CHO cells and reticulocytes were incubated with 59Fe bound to various ligands. The radioiron was present in its Fe(II) or Fe(III) forms or bound to transferrin (Tf), and the internalized 59Fe measured under varying experimental conditions. Additionally, 125I-Tf interaction with reticulocytes was investigated and 59Fe incorporation into their heme was determined. RESULTS: Hyperexpression of DMT1 in CHO cells greatly increases their capacity to acquire ferrous iron. Although CHO-Nramp2 cells showed an increase in Fe(III) uptake as compared to CHO cells, they transported Fe(III) with much lower efficacy than Fe(II). In addition to their defect in Fe uptake, mk/mk reticulocytes also showed a decrease in Tf receptor levels. CONCLUSIONS: Given that CHO cells acquire iron from Fe(II)-ascorbate with much higher rates than from Fe(III)-Tf, Tf-receptor levels represent the rate-limiting step in their iron uptake. As Fe(III) transport by CHO-Nramp2 cells can be inhibited by the impermeable oxidant K3Fe(CN)6, a membrane ferric reductase is probably needed for reduction of Fe(III) to Fe(II), which is then transported by DMT1. DMT1 is not a limiting factor in Fe acquisition by normal reticulocytes and their heme synthesis.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Reticulocitos/fisiología , Animales , Transporte Biológico , Células CHO , Proteínas de Transporte de Catión/genética , Cricetinae , Cricetulus , Ratones , Ratones Endogámicos , Fenilhidrazinas/farmacología , Proteínas Recombinantes/metabolismo , Reticulocitos/efectos de los fármacos
17.
FEBS J ; 275(15): 3793-803, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18557934

RESUMEN

Hepcidin is a liver produced cysteine-rich peptide hormone that acts as the central regulator of body iron metabolism. Hepcidin is synthesized under the form of a precursor, prohepcidin, which is processed to produce the biologically active mature 25 amino acid peptide. This peptide is secreted and acts by controlling the concentration of the membrane iron exporter ferroportin on intestinal enterocytes and macrophages. Hepcidin binds to ferroportin, inducing its internalization and degradation, thus regulating the export of iron from cells to plasma. The aim of the present study was to develop a novel method to produce human and mouse recombinant hepcidins, and to compare their biological activity towards their natural receptor ferroportin. Hepcidins were expressed in Escherichia coli as thioredoxin fusion proteins. The corresponding peptides, purified after cleavage from thioredoxin, were properly folded and contained the expected four-disulfide bridges without the need of any renaturation or oxidation steps. Human and mouse hepcidins were found to be biologically active, promoting ferroportin degradation in macrophages. Importantly, biologically inactive aggregated forms of hepcidin were observed depending on purification and storage conditions, but such forms were unrelated to disulfide bridge formation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Proteínas Reguladoras del Hierro/biosíntesis , Animales , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/fisiología , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Hepcidinas , Humanos , Proteínas Reguladoras del Hierro/aislamiento & purificación , Proteínas Reguladoras del Hierro/fisiología , Espectrometría de Masas/métodos , Ratones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
18.
Free Radic Biol Med ; 129: 127-137, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30227271

RESUMEN

The bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 are essential for expression of hepcidin, a key iron regulatory hormone. In mice, hepatocyte-specific Alk2 deficiency leads to moderate iron overload with periportal liver iron accumulation, while hepatocyte-specific Alk3 deficiency leads to severe iron overload with centrilobular liver iron accumulation and a more marked reduction of basal hepcidin levels. The objective of this study was to investigate whether the two receptors have additive roles in hepcidin regulation. Iron overload in mice with hepatocyte-specific Alk2 and Alk3 (Alk2/3) deficiency was characterized and compared to hepatocyte-specific Alk3 deficient mice. Co-immunoprecipitation studies were performed to detect the formation of ALK2 and ALK3 homodimer and heterodimer complexes in vitro in the presence and absence of ligands. The iron overload phenotype of hepatocyte-specific Alk2/3-deficient mice was more severe than that of hepatocyte-specific Alk3-deficient mice. In vitro co-immunoprecipitation studies in Huh7 cells showed that ALK3 can homodimerize in absence of BMP2 or BMP6. In contrast, ALK2 did not homodimerize in either the presence or absence of BMP ligands. However, ALK2 did form heterodimers with ALK3 in the presence of BMP2 or BMP6. ALK3-ALK3 and ALK2-ALK3 receptor complexes induced hepcidin expression in Huh7 cells. Our data indicate that: (I) ALK2 and ALK3 have additive functions in vivo, as Alk2/3 deficiency leads to a greater degree of iron overload than Alk3 deficiency; (II) ALK3, but not ALK2, undergoes ligand-independent homodimerization; (III) the formation of ALK2-ALK3 heterodimers is ligand-dependent and (IV) both receptor complexes functionally induce hepcidin expression in vitro.


Asunto(s)
Receptores de Activinas Tipo I/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 6/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Hepcidinas/genética , Sobrecarga de Hierro/genética , Hierro/metabolismo , Receptores de Activinas Tipo I/deficiencia , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 6/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/deficiencia , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Hepcidinas/metabolismo , Humanos , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Unión Proteica , Multimerización de Proteína , Índice de Severidad de la Enfermedad , Transducción de Señal
19.
Nat Commun ; 9(1): 2092, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844386

RESUMEN

Aberrant histone methylation profile is reported to correlate with the development and progression of NAFLD during obesity. However, the identification of specific epigenetic modifiers involved in this process remains poorly understood. Here, we identify the histone demethylase Plant Homeodomain Finger 2 (Phf2) as a new transcriptional co-activator of the transcription factor Carbohydrate Responsive Element Binding Protein (ChREBP). By specifically erasing H3K9me2 methyl-marks on the promoter of ChREBP-regulated genes, Phf2 facilitates incorporation of metabolic precursors into mono-unsaturated fatty acids, leading to hepatosteatosis development in the absence of inflammation and insulin resistance. Moreover, the Phf2-mediated activation of the transcription factor NF-E2-related factor 2 (Nrf2) further reroutes glucose fluxes toward the pentose phosphate pathway and glutathione biosynthesis, protecting the liver from oxidative stress and fibrogenesis in response to diet-induced obesity. Overall, our findings establish a downstream epigenetic checkpoint, whereby Phf2, through facilitating H3K9me2 demethylation at specific gene promoters, protects liver from the pathogenesis progression of NAFLD.


Asunto(s)
Desmetilación , Histona Demetilasas/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/metabolismo , Obesidad/patología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Cultivadas , Activación Enzimática , Glucosa/metabolismo , Glutatión/biosíntesis , Humanos , Hígado/patología , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Vía de Pentosa Fosfato/fisiología , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
20.
Biochem J ; 396(2): 265-75, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16457665

RESUMEN

Ferroportin [FPN; Slc40a1 (solute carrier family 40, member 1)] is a transmembrane iron export protein expressed in macrophages and duodenal enterocytes. Heterozygous mutations in the FPN gene result in an autosomal dominant form of iron overload disorder, type-4 haemochromatosis. FPN mutants either have a normal iron export activity but have lost their ability to bind hepcidin, or are defective in their iron export function. The mutant protein has been suggested to act as a dominant negative over the wt (wild-type) protein by multimer formation. Using transiently transfected human epithelial cell lines expressing mouse FPN modified by the addition of a haemagglutinin or c-Myc epitope at the C-terminus, we show that the wtFPN is found at the plasma membrane and in Rab5-containing endosomes, as are the D157G and Q182H mutants. However, the delV162 mutant is mostly intracellular in HK2 cells (human kidney-2 cells) and partially addressed at the cell surface in HEK-293 cells (human embryonic kidney 293 cells). In both cell types, it is partially associated with the endoplasmic reticulum and with Rab5-positive vesicles. However, this mutant is complex-glycosylated like the wt protein. D157G and G323V mutants have a defective iron export capacity as judged by their inability to deplete the intracellular ferritin content, whereas Q182H and delV162 have normal iron export function and probably have lost their capacity to bind hepcidin. In co-transfection experiments, the delV162 mutant does not co-localize with the wtFPN, does not prevent its normal targeting to the plasma membrane and cannot be immunoprecipitated in the same complex, arguing against the formation of FPN hetero-oligomers.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Células Epiteliales/metabolismo , Mutación Missense , Animales , Anticuerpos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Ferritinas/metabolismo , Técnica del Anticuerpo Fluorescente , Glicosilación , Humanos , Membranas Intracelulares/metabolismo , Hierro/metabolismo , Riñón/citología , Riñón/metabolismo , Ratones , Modelos Biológicos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA