Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(8): 7072-7082, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345652

RESUMEN

The promotion of lithium-ion batteries and sodium-ion batteries is limited by the deficiency of suitable anode materials with desired electrochemical properties. In this work, the models of 2D single-layer SiP are constructed to explore its potential as an anode material for LIBs and SIBs using density functional theory (DFT). The diffusion of Li in bulk SiP is anisotropic. There is a low diffusion energy barrier of 0.28 eV along the X-axis. The low surface exfoliation energy suggests that there is a high probability of preparing 2D single-layer SiP experimentally. Its structure stability is verified by ab initio molecular dynamics (AIMD) simulations at 300 K and 400 K. The intercalation and diffusion behaviors of Li/Na on 2D single-layer SiP indicate that Li/Na tends to diffuse along the X-axis direction of 2D single-layer SiP. The diffusion energy barrier of Li/Na on 2D single-layer SiP is lower compared to that of bulk SiP. The conductivity of 2D single-layer SiP is improved after lithiation due to the upshift of Fermi levels. 2D single-layer SiP has a lower average open circuit voltage (1.50 V for LIBs and 1.08 V for SIBs) and a high theoretical capacity (520 mA h g-1). Hence, 2D single-layer SiP can be an ideal anode material for LIBs and SIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA