Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Arch Virol ; 164(2): 607-612, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30474753

RESUMEN

Four new H9N2 avian influenza viruses (AIVs) were isolated from domestic birds in Guangdong between December 2015 and April 2016. Nucleotide sequence comparisons indicated that most of the internal genes of these four strains were highly similar to those of human H7N9 viruses. Amino acid substitutions and deletions found in the HA and NA proteins indicated that all four of these new isolates may have an enhanced ability to infect humans and other mammals. A cross-hemagglutinin-inhibition assay, conducted with two vaccine strains that are broadly used in China, suggested that antisera against vaccine candidates could not provide complete inhibition of the new isolates.


Asunto(s)
Antígenos Virales/genética , Evolución Molecular , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Animales , China , Patos , Gansos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H9N2 del Virus de la Influenza A/clasificación , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Sistemas de Lectura Abierta , Filogenia
2.
Foods ; 13(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39063260

RESUMEN

A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.

3.
J Phys Chem Lett ; 14(45): 10113-10118, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37921693

RESUMEN

The effects of CaCl2 and MgCl2 on the cloud point temperature of two different elastin-like polypeptides (ELPs) were studied using a combination of cloud point measurements, molecular dynamics simulations, and infrared spectroscopy. Changes in the cloud point for the ELPs in aqueous divalent metal cation solutions were primarily governed by two competing interactions: the cation-amide oxygen electrostatic interaction and the hydration of the cation. In particular, Ca2+ cations can more readily shed their hydration shells and directly contact two amide oxygens by the formation of ion bridges. By contrast, Mg2+ cations were more strongly hydrated and preferred to partition toward the amide oxygens along with their hydration shells. In fact, although hydrophilic ELP V5A2G3 was salted-out at low concentrations of MgCl2, it was salted-in at higher salt concentrations. By contrast, CaCl2 salted the ELP sharply out of solution at higher salt concentrations because of the bridging effect.


Asunto(s)
Elastina , Péptidos , Elastina/química , Cloruro de Calcio , Péptidos/química , Amidas/química , Cationes/química , Cationes Bivalentes
4.
bioRxiv ; 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35821981

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE: SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.

5.
mBio ; 13(5): e0241522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125275

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Ratones , Humanos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , SARS-CoV-2/genética , Inositol , Proteínas Serina-Treonina Quinasas/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Ribonucleasas/genética , Factores de Transcripción , ARN Mensajero , Pulmón/metabolismo , Interferones , Proteína 1 de Unión a la X-Box/genética
6.
J Phys Chem B ; 125(2): 680-688, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33406822

RESUMEN

Salt effects on the solubility of uncharged polymers in aqueous solutions are usually dominated by anions, while the role of the cation with which they are paired is often ignored. In this study, we examine the influence of three aqueous metal iodide salt solutions (LiI, NaI, and CsI) on the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) by measuring the turbidity change of the solutions. Weakly hydrated anions, such as iodide, are known to interact with the polymer and thereby lead to salting-in behavior at low salt concentration followed by salting-out behavior at higher salt concentration. When varying the cation type, an unexpected salting-out trend is observed at higher salt concentrations, Cs+ > Na+ > Li+. Using molecular dynamics simulations, it is demonstrated that this originates from contact ion pair formation in the bulk solution, which introduces a competition for iodide ions between the polymer and cations. The weakly hydrated cation, Cs+, forms contact ion pairs with I- in the bulk solution, leading to depletion of CsI from the polymer-water interface. Microscopically, this is correlated with the repulsion of iodide ions from the amide moiety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA