Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 39(12): 1660-1670, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34486791

RESUMEN

Aberrant lipid metabolism has recently been recognized as a new hallmark of malignancy, but the characteristics of fatty acid metabolism in breast cancer stem cells (BCSC) and potential interventions targeting this pathway remain to be addressed. Here, by using the in vitro BCSC models, mammosphere-derived MCF-7 cells and HMLE-Twist-ER cells, we found that the cells with stem cell-like properties exhibited a very distinct profile of fatty acid metabolism compared with that of their parental cancer cells, characterized by increased lipogenesis, especially the activity of stearoyl-CoA desaturase 1 (SCD1) responsible for the production of monounsaturated fatty acids, and augmented synthesis and utilization of the omega-6 arachidonic acid (AA). Suppression of SCD1 activity by either enzyme inhibitors or small interfering RNA (siRNA) knockdown strikingly limited self-renewal and growth of the BCSC, suggesting a key role for SCD1 in BCSC proliferation. Furthermore, elevated levels of SCD1 and other lipogenic enzymes were observed in human breast cancer tissues relative to the noncancer tissues from the same patients and correlated with the pathological grades. Interestingly, treatment of BCSC with omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, effectively downregulated the expression of the lipogenic enzymes and markedly suppressed BCSC self-renewal and growth. Dietary supplementation of nude mice bearing BCSC-derived tumors with omega-3 fatty acids also significantly reduced their tumor load. These findings have demonstrated that increased lipogenesis is critical for self-renewal and growth of BCSC, and that omega-3 fatty acids are effective in targeting this pathway to exert their anticancer effect.


Asunto(s)
Neoplasias de la Mama , Ácidos Grasos Omega-3 , Animales , Neoplasias de la Mama/patología , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Omega-3/farmacología , Femenino , Humanos , Lipogénesis , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , ARN Interferente Pequeño/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
2.
Front Immunol ; 13: 817062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281070

RESUMEN

Food allergies and other immune-mediated diseases have become serious health concerns amongst infants and children in developed and developing countries. The absence of available cures limits disease management to allergen avoidance and symptomatic treatments. Research has suggested that the presence of maternal food allergies may expose the offspring to genetic predisposition, making them more susceptible to allergen sensitization. The following review has focused on epidemiologic studies regarding maternal influences of proneness to develop food allergy in offspring. The search strategy was "food allergy OR maternal effects OR offspring OR prevention". A systematically search from PubMed/MEDLINE, Science Direct and Google Scholar was conducted. Specifically, it discussed the effects of maternal immunity, microbiota, breastfeeding, genotype and allergy exposure on the development of food allergy in offspring. In addition, several commonly utilized prenatal and postpartum strategies to reduce food allergy proneness were presented, including early diagnosis of high-risk infants and various dietary interventions.


Asunto(s)
Hipersensibilidad a los Alimentos , Alérgenos , Lactancia Materna , Niño , Femenino , Hipersensibilidad a los Alimentos/epidemiología , Hipersensibilidad a los Alimentos/prevención & control , Humanos , Lactante , Periodo Posparto , Embarazo
3.
Front Nutr ; 8: 624283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889593

RESUMEN

Scope: Sonchus Oleraceus, named bitter vegetable (BV), has been known to have multiple health benefits such as anti-aging and anti-inflammation. However, the role of BV in the prevention of obesity is unclear. The aim of this study was to examine the effect of BV lipid extracts (BVL) on obesity development. Methods and Results: Following treatments of high fat diet-induced obese mice (C57BL/6J) with BVL (0.3 mg/g of BW per mouse) for a month, mice exhibited a significant reduction in weight gain, blood triglyceride, and fasting blood glucose compared to control mice. Intriguingly, phosphorylated AMPK, a key regulator of nutrient metabolism, was markedly increased in inguinal fat of BVL group. In 3T3-L1 cells, BVL-7 (100 µg/ml), an omega-3 fatty acid-rich fraction from BVL, lowered lipid accumulation, and down-regulated the gene expression of adipocyte markers. The inhibitory effect of BVL occurred at the early stage of adipocyte differentiation, leading to the delay of mitotic clonal expansion. AMPK knockdown by siRNA abolished the inhibitory effect of BVL-7 on adipogenesis, suggesting that AMPK is essential for BVL-regulated adipocyte differentiation. Conclusion: BVL can effectively inhibit adipogenesis through, at least in part, stimulating AMPK pathway and attenuate HFD-induced obesity. Our findings suggest that BVL can be a promising dietary supplement for protection against obesity, and the effective component of BVL can be potentially developed as anti-obesity drugs.

4.
Mar Pollut Bull ; 160: 111673, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33181946

RESUMEN

Heavy metal pollution arising from agricultural and industrial activities poses a significant threat to the aquatic environment, especially the increasing levels of chromium (Cr) that is exacerbating marine pollution. Given the economic importance of the Pacific white shrimp Litopenaeus vannamei (L. vannamei), understanding the impact of marine Cr pollution is deemed to be significant. In this study, we used the transcriptome sequencing (RNA-seq) technique to characterize the molecular mechanism of Cr exposure in L. vannamei. Gene ontology enrichment analysis showed substrate-specific and ion transport-related functions were mainly influenced by Cr exposure. We further identified genes involved in protein digestion and absorption (PEPT1, BAT1, MDU1), chemical carcinogenesis (GST and UGTs), ABC transporters (ABCC2), apoptosis (CAPN1, CASP10, PARP), implying the potentially Cr disintoxication mechanisms in L. vannamei. Genes within pancreatic secretion (ALT, LDH), lysosome (CTSL and HEXB), and peroxisome (ACOX1, ECI2, NUDT12) pathways implied the potentially Cr toxicity mechanisms in L. vannamei.


Asunto(s)
Cromo , Penaeidae , Animales , Cromo/toxicidad , Perfilación de la Expresión Génica , Ontología de Genes , Penaeidae/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA