RESUMEN
Benefitting from high sensitivity, real-time, and label-free imaging, surface plasmon resonance microscopy (SPRM) has become a powerful tool for dynamic detection of nanoparticles. However, the evanescent propagation of surface plasmon polaritons (SPPs) induces interference between scattered and launched SPPs, which deteriorates the spatial resolution and signal-to-noise ratio (SNR). Due to the simplicity and fast processing, image reconstruction based on deconvolution has shown the feasibility of improving the spatial resolution of SPRM imaging. Retrieving the particle scattering from SPRM interference imaging by filters is crucial for reconstruction. In this work, we illustrate the effect of filters extracting SPP scattering of nanoparticles with different sizes and shapes for reconstruction. The results indicate that the optimum filters are determined by the material of nanoparticles instead of particle sizes. The reconstruction of single Au and PS nanospheres as well as Ag nanowires with optimum filters is achieved. The reconstructed spatial resolution is improved to 254 nm, and the SNR is increased by 8.1 times. Our research improves the quality of SPRM imaging and provides a reliable method for fast detection of particles with diverse sizes and shapes.
RESUMEN
Directional surface plasmon polaritons (SPPs) are expected to promote the energy efficiency of plasmonic devices, via limiting the energy in a given spatial domain. The directional scattering of dielectric nanoparticles induced by the interference between electric and magnetic responses presents a potential candidate for directional SPPs. Magnetic nanoparticles can introduce permeability as an extra manipulation, whose directional scattered SPPs have not been investigated yet. In this work, we demonstrated the directional scattered SPPs by using single magnetic nanoparticles via simulation and experiment. By increasing the permeability and particle size, the high-order TEM modes are excited inside the particle and induce more forward directional SPPs. It indicated that the particle size manifests larger tuning range compared with the permeability. Experimentally, the maximum forward-to-backward (F-to-B) SPP scattering intensity ratio of 118.52:1 is visualized by using a single 1â µm Fe3O4 magnetic nanoparticle. The directional scattered SPPs of magnetic nanoparticles are hopeful to improve the efficiency of plasmonic devices and pave the way for plasmonic circuits on-chip.
RESUMEN
Derivatization is the fine chemistry that can produce chemical compounds from similar precursors and has been widely used in the field of organic synthesis to achieve diversification of molecular properties and functionalities. Ligand-protected metal nanoclusters (NCs) are metallic molecules with a definite molecular formula, well-defined molecular structure, and molecular-like physical and chemical properties. Unlike organic compounds, which have almost infinite species, until now only hundreds of metal NC species have been discovered, and only a few of them have been structurally resolved. Therefore, the diversification of NC species and functions is highly desirable in nanoscience and nanochemistry. As an efficient approach for generating a library of compounds from a given precursor, derivatization chemistry is not only applicable in producing new organic compounds but also a promising strategy for generating new metal NC species with intriguing properties and functions. The key to the derivatization of metal NCs is to design an efficient derivatization reaction suitable for metal NCs and spontaneously realize the customization of this special macromolecule (metallic molecule) at the atomic and molecular level.In this Account, we use the flagship thiolate-protected NC Au25SR18 (SR denotes a thiolate ligand) as a model to illustrate the derivatization chemistry of metal NCs. In the past 3 years we have developed various derivatization reactions of Au25SR18, including isomerization, redox, ligand addition, alloying, and self-assembly reactions. We discuss the mechanisms that govern these reactions to realize precise customization of the NC structure, size, surface, composition, and interactions. It is particularly noteworthy that advanced techniques such as real-time electrospray ionization mass spectrometry and NMR spectroscopy enable us to have an atomic- and molecular-level understanding of the reaction mechanisms, which will further promote our efforts to design derivatization reactions for metal NCs. Through these delicate derivatization reactions, we can produce Au25SR18 derivatives with new physical, chemical, and biological properties, including electronic structures, photoluminescence, surface reactivity, and antimicrobial properties. Finally, we provide our perspectives on the opportunities and challenges of metal NC derivatization.The derivatization chemistry of metal NCs can not only diversify the properties and functions of metal NCs but also help us understand the structure-property relationship and design principles of metal nanomaterials, which will help advance the research frontier of nanoscience toward atomic precision.
RESUMEN
Plasmonic imaging has exhibited superiority in label-free and fast detection to single nanoparticles due to its high sensitivity and high temporal resolution, which plays an important role in environmental monitoring and biomedical research. As containing plenty of information associated with particle features, plasmonic imaging has been used for identifying the particle sizes, shapes, and permittivity. Yet, the effects of the nanoparticle features on plasmonic imaging are not investigated, which hinders the in-depth understanding to plasmonic imaging and its applications in particle identification. In this work, we analyzed five types of nanoparticles, including polystyrene (PS), Au, silicon nanospheres as well as PS and Ag nanowires. We illustrated the effects of nanoparticle sizes, shapes, and permittivity on spatial resolution, imaging contrast, and interference fringes. We found that nanoparticle sizes and permittivity influenced the imaging contrast. Via introducing size parameter relevant to interference fringes, the connection between particle shape and reduction rate of size parameter is built, and the effects of particle shapes on the interference patterns are revealed. Our research provides a basis for improving the plasmonic imaging and presents guidance for applications on particle identification in nano-detection, biosensor, and environmental monitoring.
RESUMEN
The design of surface ligands is crucial for ligand-protected gold nanoclusters (Au NCs). Besides providing good protection for Au NCs, the surface ligands also play the following two important roles: i) as the outermost layer of Au NCs, the ligands will directly interact with the exterior environment (e.g., solvents, molecules and cells) influencing Au NCs in various applications; and ii) the interfacial chemistry between ligands and gold atoms can determine the structures, as well as the physical and chemical properties of Au NCs. A delicate ligand design in Au NCs (or other metal NCs) needs to consider the covalent bonds between ligands and gold atoms (e.g., gold-sulfur (Au-S) and gold-phosphorus (Au-P) bond), the physics forces between ligands (e.g., hydrophobic and van der Waals forces), and the ionic forces between the functional groups of ligands (e.g., carboxylic (COOH) and amine group (NH2 )); which form the underlying chemistry and discussion focus of this review article. Here, detailed discussions on the effects of surface ligands (e.g., thiolate, phosphine, and alkynyl ligands; or hydrophobic and hydrophilic ligands) on the synthesis, structures, and properties of Au NCs; highlighting the design principles in the surface engineering of Au NCs for diverse emerging applications, are provided.
Asunto(s)
Oro , Nanopartículas del Metal , LigandosRESUMEN
Low selectivity and poor activity of photocatalytic CO2 reduction process are usually limiting factors for its applicability. Herein, a hierarchical electron harvesting system is designed on CoNiP hollow nano-millefeuille (CoNiP NH), which enables the charge enrichment on CoNi dual active sites and selective conversion of CO2 to CH4 . The CoNiP serves as an electron harvester and photonic "black hole" accelerating the kinetics for CO2 -catalyzed reactions. Moreover, the dual sites form from highly stable CoONiC intermediates, which thermodynamically not only lower the reaction energy barrier but also transform the reaction pathways, thus enabling the highly selective generation of CH4 from CO2 . As an outcome, the CoNiP NH/black phosphorus with dual sites leads to a tremendously improved photocatalytic CH4 generation with a selectivity of 86.6% and an impressive activity of 38.7 µmol g-1 h-1 .
Asunto(s)
Dióxido de Carbono , Electrones , CatálisisRESUMEN
L-Lactide is an intermediate for the industrial production of polylactic acid (PLA). The chemical and optical purities of lactide determine the quality of the prepared PLA. It is of great challenge to synthesize L-lactide efficiently with high chemical and optical purities under the conditions applicable for industrial production. With the national plastic reduction order issued, developing biodegradable materials such as PLA has gradually become a hot topic, and the production of upstream lactide is the key technique for the whole industrial chain. This mini-review aims to summarize typical works on the related synthetic technology development in recent years.
RESUMEN
Synthesizing nanomaterials with anisotropic architectures, especially two-dimensional (2D) nanosheets (NSs), is a key focus of materials science research. Metal sulfide nanosheets (MSNSs) are typically obtained involving exfoliation of bulk metal sulfides with layered structures. The synthesis of NSs of intrinsically non-layered metal sulfides has received relatively less attention. Metal alkanethiolates with lamellar structures are now shown to serve as effective scaffolds for constructing NSs. A novel photochemical step was employed to transform 2D metal thiolates into MSNSs. By this strategy the 2D nature of metal thiolate precursors was preserved in the final products, resulting in the successful synthesis of NSs of binary PbS, CdS, and Cu9 S5 , as well as ternary wurtzite CuInS2 , Cu2 SnS3 . Results encourage the wider utilization of photochemical strategies in the synthesis of anisotropic MSNSs.
RESUMEN
Aurophilic interactions (AuI â â â AuI ) are crucial in directing the supramolecular self-assembly of many gold(I) compounds; however, this intriguing chemistry has been rarely explored for the self-assembly of nanoscale building blocks. Herein, we report on studies on aurophilic interactions in the structure-directed self-assembly of ultrasmall gold nanoparticles or nanoclusters (NCs, <2â nm) using [Au25 (SR)18 ]- (SR=thiolate ligand) as a model cluster. The self-assembly of NCs is initiated by surface-motif reconstruction of [Au25 (SR)18 ]- from short SR-[AuI -SR]2 units to long SR-[AuI -SR]x (x>2) staples accompanied by structure modification of the intrinsic Au13 kernel. Such motif reconstruction increases the content of AuI species in the protecting shell of Au NCs, providing the structural basis for directed aurophilic interactions, which promote the self-assembly of Au NCs into well-defined nanoribbons in solution. More interestingly, the compact structure and effective aurophilic interactions in the nanoribbons significantly enhance the luminescence intensity of Au NCs with an absolute quantum yield of 6.2 % at room temperature.
RESUMEN
Photoinduced syntheses offer significant advantages over conventional thermal strategies, including improved control over reaction kinetics and low synthesis temperatures, affording nanoparticles with nontrivial and thermodynamically unstable structures. However, the photoinduced syntheses of non-metallic nanocrystalline products (such as metal sulfides) have not yet been reported. Herein, we demonstrate the first photoinduced synthesis of ultrafine (sub-2â nm) Ag2 S quantum dots (QDs) from Ag nanoparticles at 10 °C. By thorough investigation of the mechanism for the transformation, a fundamental link was established between the intrinsic structures of the molecular intermediates and the final Ag2 S products. Our results confirm the viability of low-temperature photochemical approaches in metal sulfide synthesis, and demonstrate a new rule which could be followed in it.
RESUMEN
We report an effective and universal approach for the preparation of ultrathin single- or multiple-component transition-metal hydroxide (TMH) nanosheets with thickness below 5â nm. The unique synthesis benefits from the gradual decomposition of the preformed metal-boron (M-B, M=Fe, Co, Ni, NiCo) composite nanospheres which facilitates the formation of ultrathin nanosheets by the oxidation of the metal and the simultaneous release of boron species. The high specific surface area of the sheets associated with their ultrathin nature promises a wide range of applications. For example, we demonstrate the remarkable adsorption ability of Pb(II) and As(V) in waste water by the ultrathin FeOOH nanosheets. More interestingly, the process can be extended simply to the synthesis of composite structures of metal alloy hollow shells encapsulated by TMH nanosheets, which show excellent catalytic activity in the Heck reaction.
RESUMEN
Mechanofluorochromic materials are a type of "smart" material because of their adjustable fluorescent properties under external mechanical force, making them significant members of the materials family. However, as the fluorescent characteristics of these materials highly depend on their microstructures, the still insufficiently in-depth research linking molecular structures to light emission motivates researchers to explore the fluorescent properties of these materials under external stimuli. In this work, based on synthetic [AgS4] microplates, we explore a fascinating mechanical-induced photoluminescent enhancement phenomenon. By applying mechanical force to solid-state [AgS4] to damage the surface morphology, a significant enhancement in photoluminescence is observed. Moreover, the emitted intensity increases with the extent of damage, which can be attributed to alterations in crystallinity. This work provides valuable insights into the relationship among photoluminescence, crystallinity, and mechanical force, offering new strategies for designing luminescent devices.
RESUMEN
Metal nanoclusters (NCs), composed of a metal core and protecting ligands, show promising potentials as enzyme mimics for producing fuels, pharmaceuticals, and valuable chemicals, etc. Herein, we explore the critical role of ligands in modulating the peroxidase mimic activity and stability of Au NCs. A series of Au15(SR)13 NCs with various thiolate ligands [SR = N-acetyl-l-cysteine (NAC), 3-mercaptopropionic acid (MPA), or 3-mercapto-2-methylpropanoic acid (MMPA)] are utilized as model catalysts. It is found that Au15(NAC)13 shows higher structural stability than Au15(MMPA)13 and Au15(MPA)13 against external stimuli (e.g., pH, oxidants, and temperature) because of the intramolecular hydrogen bonds. More importantly, detailed enzymatic kinetics data show that the catalytic activity of Au15(NAC)13 is about 4.3 and 2.7 times higher than the catalytic activity of Au15(MMPA)13 and Au15(MPA)13, respectively. Density functional theory (DFT) calculations reveal that the Au atoms on the motif of Au NCs should be the active centers, whereas the superior peroxidase mimic activity of Au15(NAC)13 should originate from the emptier orbitals of Au atoms because of the electron-withdrawing effect of acetyl amino group in NAC. This work demonstrates the ligand-engineered electronic structure and functionality of atomically precise metal NCs, which afford molecular and atomic level insights for artificial enzyme design.
Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Peroxidasa , Nanopartículas del Metal/química , Ligandos , ColorantesRESUMEN
The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjusting the surface dynamics of their constituent NPs. In the presence of excess tetraethylammonium cations, atomically precise [Au25(SR)18]- NPs (where SR is a thiolate ligand) can be crystallized into micrometre-sized hexagonal rod-like supercrystals, rather than as face-centred-cubic superlattices otherwise. Experimental characterization supported by theoretical modelling shows that the rod-like crystals consist of polymeric chains in which Au25 NPs are held together by a linear SR-[Au(I)-SR]4 interparticle linker. This linker is formed by conjugation of two dynamically detached SR-[Au(I)-SR]2 protecting motifs from adjacent Au25 particles, and is stabilized by a combination of CHâ¯π and ion-pairing interactions between tetraethylammonium cations and SR ligands. The symmetry, morphology and size of the resulting supercrystals can be systematically tuned by changing the concentration and type of the tetraalkylammonium cations.
RESUMEN
Alloy nanoparticles represent one of the most important metal materials, finding increasing applications in diverse fields of catalysis, biomedicine, and nano-optics. However, the structural evolution of bimetallic nanoparticles in their full composition spectrum has been rarely explored at the molecular and atomic levels, imparting inherent difficulties to establish a reliable structure-property relationship in practical applications. Here, through an inter-particle reaction between [Au44(SR)26]2- and [Ag44(SR)30]4- nanoparticles or nanoclusters (NCs), which possess the same number of metal atoms, but different atomic packing structures, we reveal the composition-dependent structural evolution of alloy NCs in the alloying process at the molecular and atomic levels. In particular, an inter-cluster reaction can produce three sets of Au x Ag44-x NCs in a wide composition range, and the structure of Au x Ag44-x NCs evolves from Ag-rich [Au x Ag44-x (SR)30]4- (x = 1-12), to evenly mixed [Au x Ag44-x (SR)27]3- (x = 19-24), and finally to Au-rich [Au x Ag44-x (SR)26]2- (x = 40-43) NCs, with the increase of the Au/Ag atomic ratio in the NC composition. In addition, leveraging on real-time electrospray ionization mass spectrometry (ESI-MS), we reveal the different inter-cluster reaction mechanisms for the alloying process in the sub-3-nm regime, including partial decomposition-reconstruction and metal exchange reactions. The molecular-level inter-cluster reaction demonstrated in this study provides a fine chemistry to customize the composition and structure of bimetallic NCs in their full alloy composition spectrum, which will greatly increase the acceptance of bimetallic NCs in both basic and applied research.
RESUMEN
The interactions of materials with light determine their applications in various fields. In the past decade, ultrasmall metal nanoclusters (NCs) have emerged as a promising class of optical materials due to their unique molecular-like properties. Herein, the basic principles of optical absorption and photoluminescence of metal NCs, their interactions with polarized light, and light-induced chemical reactions, are discussed, highlighting the roles of the core and protecting ligands/motifs of metal NCs in their interactions with light. The metal core and protecting ligands/motifs determine the electronic structures of metal NCs, which are closely related to their optical properties. In addition, the protecting ligands/motifs of metal NCs contribute to their photoluminescence and chiral origin, further promoting the interactions of metal NCs with light through various pathways. The fundamentals of light-NC interactions provide guidance for the design of metal NCs in optical applications, which are discussed in the second part. In the last section, some strategies are proposed to further understand light-NC interactions, highlighting the challenges and opportunities. It is hoped that this work will stimulate more research on the optical properties of metal NCs and their applications in various fields.
RESUMEN
Au(I)-thiolate complexes are a new class of aggregation-induced emission (AIE) material. Here we demonstrate a new aggregation strategy of water-soluble Au(I)-thiolate complexes induced by cationic polymers at optimized pH values. The generated AIE shows longer wavelengths than the emission induced by other methods.
Asunto(s)
Oro , Polímeros , Cationes , Oro/química , Polímeros/química , AguaRESUMEN
Etching (often considered as decomposition) is one of the key considerations in the synthesis, storage, and application of metal nanoparticles. However, the underlying chemistry of their etching process still remains elusive. Here, we use real-time electrospray ionization mass spectrometry to study the reaction dynamics and size/structure evolution of all the stable intermediates during the etching of water-soluble thiolate-protected gold nanoclusters (Au NCs), which reveal an unusual "recombination" process in the oxidative reaction environment after the initial decomposition process. Interestingly, the sizes of NC species grow larger and their ligand-to-metal ratios become higher during this recombination process, which are distinctly different from that observed in the reductive growth of Au NCs (e.g., lower ligand-to-metal ratios with increasing sizes). The etching chemistry revealed in this study provides molecular-level understandings on how metal nanoparticles transform under the oxidative reaction environment, providing efficient synthetic strategies for new NC species through the etching reactions.
RESUMEN
Catalytic oxidation is an important reaction in the fine chemical industry, environment, and energy. In the past few decades, many kinds of catalysts have been produced with promising catalytic performance for oxidation reactions; however, the understanding of the mechanisms is still insufficient due to the complexity of the composition and structure of conventional catalysts. In the past several years, the community has tried to address this problem by using ligand-protected atomically precise gold nanoclusters as model catalysts. Ligand-protected gold nanoclusters possess well-defined molecular formulas and structures, and they could serve as ideal model catalysts to understand the correlations between the composition/structure and the catalytic properties at the atomic level. This feature article provides a systematic overview of the related oxidation reactions and the understanding of the mechanisms based on atomically precise gold nanoclusters.
RESUMEN
Diverse methods have been developed to tailor the number of metal atoms in metal nanoclusters, but control of surface ligand number at a given cluster size is rare. Here we demonstrate that reversible addition and elimination of a single surface thiolate ligand (-SR) on gold nanoclusters can be realized, opening the door to precision ligand engineering on atomically precise nanoclusters. We find that oxidative etching of [Au25SR18]- nanoclusters adds an excess thiolate ligand and generates a new species, [Au25SR19]0. The addition reaction can be reversed by CO reduction of [Au25SR19]0, leading back to [Au25SR18]- and eliminating precisely one surface ligand. Intriguingly, we show that the ligand shell of Au25 nanoclusters becomes more fragile and rigid after ligand addition. This reversible addition/elimination reaction of a single surface ligand on gold nanoclusters shows potential to precisely control the number of surface ligands and to explore new ligand space at each nuclearity.