Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(5): 2732-2744, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258555

RESUMEN

Reaction of 2,4,6-trifluoropyridine with sodium 3,4-dimethoxybenzenethiolate and 2 equiv of sodium pyrazolate in tetrahydrofuran at room temperature affords 4-(3,4-dimethoxyphenylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L), in 30% yield. The iron(II) complexes [FeL2][BF4]2 (1a) and [FeL2][ClO4]2 (1b) are high-spin with a highly distorted six-coordinate geometry. This structural deviation from ideal D2d symmetry is common in high-spin [Fe(bpp)2]2+ (bpp = di{pyrazol-1-yl}pyridine) derivatives, which are important in spin-crossover materials research. The magnitude of the distortion in 1a and 1b is the largest yet discovered for a mononuclear complex. Gas-phase DFT calculations at the ω-B97X-D/6-311G** level of theory identified four minimum or local minimum structural pathways across the distortion landscape, all of which are observed experimentally in different complexes. Small distortions from D2d symmetry are energetically favorable in complexes with electron-donating ligand substituents, including sulfanyl groups, which also have smaller energy penalties associated with the lowest energy distortion pathway. Natural population analysis showed that these differences reflect greater changes to the Fe-N{pyridyl} σ-bonding as the distortion proceeds, in the presence of more electron-rich pyridyl donors. The results imply that [Fe(bpp)2]2+ derivatives with electron-donating pyridyl substituents are more likely to undergo cooperative spin transitions in the solid state. The high-spin salt [Fe(bpp)2][CF3SO3]2, which also has a strong angular distortion, is also briefly described and included in the analysis.

2.
Inorg Chem ; 60(19): 14988-15000, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34547208

RESUMEN

Iron(II) complex salts of 2,6-di(1,2,3-triazol-1-yl)pyridine (L1) are unexpectedly unstable in undried solvent. This is explained by the isolation of [Fe(L1)4(H2O)2][ClO4]2 and [Fe(NCS)2(L1)2(H2O)2]·L1, containing L1 bound as a monodentate ligand rather than in the expected tridentate fashion. These complexes associate into 44 grid structures through O-H···N hydrogen bonding; a solvate of a related 44 coordination framework, catena-[Cu(µ-L1)2(H2O)2][BF4]2, is also presented. The isomeric ligands 2,6-di(1,2,3-triazol-2-yl)pyridine (L2) and 2,6-di(1H-1,2,3-triazol-4-yl)pyridine (L3) bind to iron(II) in a more typical tridentate fashion. Solvates of [Fe(L3)2][ClO4]2 are low-spin and diamagnetic in the solid state and in solution, while [Fe(L2)2][ClO4]2 and [Co(L3)2][BF4]2 are fully high-spin. Treatment of L3 with methyl iodide affords 2,6-di(2-methyl-1,2,3-triazol-4-yl)pyridine (L4) and 2-(1-methyl-1,2,3-triazol-4-yl)-6-(2-methyl-1,2,3-triazol-4-yl)pyridine (L5). While salts of [Fe(L5)2]2+ are low-spin in the solid state, [Fe(L4)2][ClO4]2·H2O is high-spin, and [Fe(L4)2][ClO4]2·3MeNO2 exhibits a hysteretic spin transition to 50% completeness at T1/2 = 128 K (ΔT1/2 = 6 K). This transition proceeds via a symmetry-breaking phase transition to an unusual low-temperature phase containing three unique cation sites with high-spin, low-spin, and 1:1 mixed-spin populations. The unusual distribution of the spin states in the low-temperature phase reflects "spin-state frustration" of the mixed-spin cation site by an equal number of high-spin and low-spin nearest neighbors. Gas-phase density functional theory calculations reproduce the spin-state preferences of these and some related complexes. These highlight the interplay between the σ-basicity and π-acidity of the heterocyclic donors in this ligand type, which have opposing influences on the molecular ligand field. The Brønsted basicities of L1-L3 are very sensitive to the linkage isomerism of their triazolyl donors, which explains why their iron complex spin states show more variation than the better-known iron(II)/2,6-dipyrazolylpyridine system.

3.
Inorg Chem ; 58(15): 9811-9821, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31335133

RESUMEN

Structure-function relationships relating the spin-crossover (SCO) midpoint temperature (T1/2) in the solid state are surveyed for 43 members of the iron(II) dipyrazolylpyridine family of SCO compounds. The difference between T1/2 in the solid state and in solution [ΔT(latt)] is proposed as a measure of the lattice contribution to the transition temperature. Negative linear correlations between the SCO temperature and the magnitude of the rearrangement of the coordination sphere during SCO are evident among isostructural or near-isostructural subsets of compounds; that is, a larger change in the molecular structure during SCO stabilizes the high-spin state of a material. Improved correlations are often obtained when ΔT(latt), rather than the raw T1/2 value, is considered as the measure of the SCO temperature. Different lattice types show different tendencies to stabilize the high-spin or low-spin state of the molecules they contain, which correlates with the structural changes that most influence ΔT(latt) in each case. These relationships are mostly unaffected by the SCO cooperativity in the compounds or by the involvement of any crystallographic phase changes. One or two materials within each subset are outliers in some or all of these correlations, however, which, in some cases, can be attributed to small differences in their ligand geometry or unusual phase behavior during SCO. A reinvestigation of the structural chemistry of [Fe(3-bpp)2][NCS]2·nH2O [3-bpp = bis(1H-pyrazol-3-yl)pyridine; n = 0 or 2], undertaken as part of this study, is also presented.

4.
Chemistry ; 24(20): 5055-5059, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29111607

RESUMEN

Crystalline [FeL2 ][BF4 ]2 ⋅Me2 CO (L=N-[2,6-di{pyrazol-1-yl}pyrid-4-yl]acetamide) is high-spin at room temperature, and undergoes an abrupt, hysteretic spin-crossover at T1/2 =137 K (ΔT1/2 =14 K) that proceeds to about 50 % completeness. This is associated with a crystallographic phase transition, from phase 1 (P21 /c, Z=4) to phase 2 (P21 , Z=48). The cations associate into chains in the crystal through weak intermolecular π⋅⋅⋅π interactions. Phase 2 contains a mixture of high-spin and low-spin molecules, which are grouped into triads along these chains. The perchlorate salt [FeL2 ][ClO4 ]2 ⋅Me2 CO also adopts phase 1 at room temperature but undergoes a different phase transition near 135 K to phase 3 (P21 /c, Z=8) without a change in spin state.

5.
Inorg Chem ; 56(15): 8817-8828, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28699741

RESUMEN

Seven [FeL2][BF4]2 complex salts were prepared, where L is a 6-substituted 2,4-di(pyrazol-1-yl)-1,3,5-triazine (bpt) derivative. The complexes are all crystallographically high-spin, and exhibit significant distortions from an ideal D2d-symmetric coordination geometry. In one case, an unusual type of metal ion disorder was observed among a cubic array of ligands in the crystal lattice. The complexes are also high-spin between 3 and 300 K in the solid state and, where measured, between 239 and 333 K in CD3CN solution. This result is unexpected, since homoleptic iron(II) complexes of related 2,6-di(pyrazol-1-yl)pyridine, 2,6-di(pyrazol-1-yl)pyrazine, and 2,6-di(pyrazol-1-yl)pyrimidine derivatives often exhibit thermal spin-crossover behavior. Gas-phase density functional theory calculations confirm the high-spin form of [Fe(bpt)2]2+ and its derivatives is stabilized relative to iron(II) complexes of the other ligand types. This reflects a weaker Fe/pyrazolyl σ-bonding interaction, which we attribute to a small narrowing of the chelate ligand bite angle associated with the geometry of the 1,3,5-triazinyl ring. Hence, the high-spin state of [Fe(bpt)2]2+ centers does not reflect the electronic properties of its heterocyclic ligand donors but is imposed by the bpt ligand conformation. A high-spin homoleptic iron(III) complex of one of the bpt derivatives was also synthesized.

6.
JACS Au ; 4(2): 744-759, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425934

RESUMEN

The tandem CO2 hydrogenation to hydrocarbons over mixed metal oxide/zeolite catalysts (OXZEO) is an efficient way of producing value-added hydrocarbons (platform chemicals and fuels) directly from CO2via methanol intermediate in a single reactor. In this contribution, two MAPO-18 zeotypes (M = Mg, Si) were tested and their performance was compared under methanol-to-olefins (MTO) conditions (350 °C, PCH3OH = 0.04 bar, 6.5 gCH3OH h-1 g-1), methanol/CO/H2 cofeed conditions (350 °C, PCH3OH/PCO/PH2 = 1:7.3:21.7 bar, 2.5 gCH3OH h-1 g-1), and tandem CO2 hydrogenation-to-olefin conditions (350 °C, PCO2/PH2 = 7.5:22.5 bar, 1.4-12.0 gMAPO-18 h molCO2-1). In the latter case, the zeotypes were mixed with a fixed amount of ZnO:ZrO2 catalyst, well-known for the conversion of CO2/H2 to methanol. Focus was set on the methanol conversion activity, product selectivity, and performance stability with time-on-stream. In situ and ex situ Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR), sorption experiments, and ab initio molecular dynamics (AIMD) calculations were performed to correlate material performance with material characteristics. The catalytic tests demonstrated the better performance of MgAPO-18 versus SAPO-18 at MTO conditions, the much superior performance of MgAPO-18 under methanol/CO/H2 cofeeds, and yet the increasingly similar performance of the two materials under tandem conditions upon increasing the zeotype-to-oxide ratio in the tandem catalyst bed. In situ FT-IR measurements coupled with AIMD calculations revealed differences in the MTO initiation mechanism between the two materials. SAPO-18 promoted initial CO2 formation, indicative of a formaldehyde-based decarboxylation mechanism, while CO and ketene were the main constituents of the initiation pool in MgAPO-18, suggesting a decarbonylation mechanism. Under tandem CO2 hydrogenation conditions, the presence of high water concentrations and low methanol partial pressure in the reaction medium led to lower, and increasingly similar, methanol turnover frequencies for the zeotypes. Despite both MAPO-18 zeotypes showing signs of activity loss upon storage due to the interaction of the sites with ambient humidity, they presented a remarkable stability after reaching steady state under tandem reaction conditions and after steaming and regeneration cycles at high temperatures. Water adsorption experiments at room temperature confirmed this observation. The faster activity loss observed in the Mg version is assigned to its harder Mg2+-ion character and the higher concentration of CHA defects in the AEI structure, identified by solid-state NMR and XRD. The low stability of a MgAPO-34 zeotype (CHA structure) upon storage corroborated the relationship between CHA defects and instability.

7.
Dalton Trans ; 50(21): 7417-7426, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969863

RESUMEN

The synthesis of six 2,6-di(pyrazol-1-yl)pyridine derivatives bearing dithiolane or carboxylic acid tether groups is described: [2,6-di(pyrazol-1-yl)pyrid-4-yl]methyl (R)-lipoate (L1), 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxamido]ethyl (R)-lipoate (L2), 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxy]ethyl (R)-lipoate (L3), N-([2,6-di(pyrazol-1-yl)pyrid-4-ylsulfanyl]-2-aminoethyl (R)-lipoamide (L4), 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxamido]acetic acid (L5) and 2-[(2,6-di(pyrazol-1-yl)pyridine)-4-carboxamido]propionic acid (L6). The iron(ii) perchlorate complexes of all the new ligands exhibit gradual thermal spin-crossover (SCO) in the solid state above room temperature, except L4 whose complex remains predominantly high-spin. Crystalline [Fe(L6)2][ClO4]2·2MeCN contains three unique cation sites which alternate within hydrogen-bonded chains, and undergo gradual SCO at different temperatures upon warming. The SCO midpoint temperature (T1/2) of the complexes in CD3CN solution ranges between 208-274 K, depending on the functional group linking the tether groups to the pyridyl ring. This could be useful for predicting how these complexes might behave when deposited on gold or silica surfaces.

8.
Dalton Trans ; 48(46): 17310-17320, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31720621

RESUMEN

The Fe[BF4]2 complex of 2,4-di(pyrazol-1-yl)-6H-1,3,5-triazine (L1) is a high-spin molecular square, [{Fe(L1)}4(µ-L1)4][BF4]8, whose crystals also contain the unusual HPzBF3 (HPz = pyrazole) adduct. Three other 2,4-di(pyrazol-1-yl)-6H-1,3,5-triazine derivatives with different pyrazole substituents (L2-L4) are unstable in the presence of first row transition ions, but form mononuclear, polymeric or molecular square complexes with silver(i). Most of these compounds involve bis-bidentate di(pyrazolyl)triazine coordination, which is unusual for that class of ligand, and the molecular squares encapsulate one or two BF4-, ClO4- or SbF6- ions through combinations of anionπ, AgX and/or C-HX (X = O or F) interactions. Treatment of Fe[NCS]2 or Fe[NCSe]2 with 4,6-di(pyrazol-1-yl)-2H-pyrimidine (L5) or its 2-methyl and 2-amino derivatives (L6 and L7) yields mononuclear [Fe(NCE)2L2] and/or the 1D coordination polymers catena-[Fe(NCE)2(µ-L)] (E = S or Se, L = L5-L7). Alcohol solvates of isomorphous [Fe(NCS)2L2] and [Fe(NCSe)2L2] compounds show different patterns of intermolecular hydrogen bonding, reflecting the acceptor properties of the anion ligands. These iron compounds are all high-spin, although annealing solvated crystals of [Fe(NCSe)2(L5)2] affords a new phase exhibiting an abrupt, low-temperature spin transition. Catena-[Fe(H2O)2(µ-L5)][ClO4]2 is a coordination polymer of alternating cis and trans iron centres.

9.
Dalton Trans ; 47(15): 5269-5278, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29565079

RESUMEN

Silver(i) complexes of 2,4,6-tri(pyrazol-1-yl)pyridine (tpp), 2,4,6-tri(pyrazol-1-yl)pyrimidine (tpym), 2,4,6-tri(pyrazol-1-yl)-1,3,5-triazine (tpt) and 2,4-di(pyrazol-1-yl)-1,3,5-triazine (bpt) are reported. Dinuclear [Ag2(µ-tpp)2(MeCN)2][BF4]2·2MeCN and [Ag2(µ-tpym)2(MeCN)2][BF4]2 are formed from approximately planar [AgL(NCMe)]+ (L = tpp or bpym) centres, which dimerise via apical interactions to the pendant pyrazolyl donor on each ligand. Two polymeric solvatomorph phases [Ag2(µ-tpp)2][BF4]2·nMeNO2 were obtained by crystallising AgBF4 and tpp from nitromethane solution. One is composed of the same dimeric [Ag2(µ-tpp)2]2+ motif as the MeCN solvates, but with semibridging pyrazolyl substitutents replacing the solvent ligands. The other form has helicate [Ag2(µ-tpp)2]2+ dimers linked into chains by unsupported AgAg interactions. In contrast, [Ag5(µ3-tpym)4][BF4]5·2MeNO2 contains discrete pentametallic assemblies, of a flattened [Ag4(µ-tpym)4]4+ molecular square centred by the fifth silver ion. Three helical or linear 1D coordination polymer topologies are described for [Ag(µ-tpt)]X (X- = BF4- or ClO4-), where ditopic tpt ligands bind one silver ion in a [2 + 1] geometry and the other in bidentate, [1 + 1] or monodentate fashion. Finally, [Ag(bpt)]BF4 is a polymer of square planar silver ions linked by bis-bidentate bpt ligands. Most of the tpt and bpt structures include short anionπ contacts to the ligand triazinyl rings. Electrospray mass spectra confirm the oligomeric nature of the Ag/tpym and tpt complexes in MeNO2 solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA