Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430520

RESUMEN

Trazodone is an efficacious atypical antidepressant acting both as an SSRI and a 5HT2A and 5HT2C antagonist. Antagonism to H1-histaminergic and alpha1-adrenergic receptors is responsible for a sleep-promoting action. We studied long-term gene expression modulations induced by chronic trazodone to investigate the molecular underpinning of trazodone efficacy. Rats received acute or chronic treatment with trazodone or citalopram. mRNA expression of growth factor and circadian rhythm genes was evaluated by qPCR in the prefrontal cortex (PFCx), hippocampus, Nucleus Accumbens (NAc), amygdala, and hypothalamus. CREB levels and phosphorylation state were evaluated using Western blotting. BDNF levels were significantly increased in PFCx and hippocampus by trazodone and in the NAc and hypothalamus by citalopram. Likewise, TrkB receptor levels augmented in the PFCx after trazodone and in the amygdala after citalopram. FGF-2 and FGFR2 levels were higher after trazodone in the PFCx. The CREB phosphorylation state was increased by chronic trazodone in the PFCx, hippocampus, and hypothalamus. Bmal1 and Per1 were increased by both antidepressants after acute and chronic treatments, while Per2 levels were specifically augmented by chronic trazodone in the PFCx and NAc, and by citalopram in the PFCx, amygdala, and NAc. These findings show that trazodone affects the expression of neurotrophic factors involved in antidepressant responses and alters circadian rhythm genes implicated in the pathophysiology of depression, thus shedding light on trazodone's molecular mechanism of action.


Asunto(s)
Trazodona , Animales , Ratas , Trazodona/farmacología , Trazodona/metabolismo , Citalopram/farmacología , Ritmo Circadiano , Antidepresivos/farmacología , Encéfalo/metabolismo , Expresión Génica
2.
Molecules ; 27(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500414

RESUMEN

Opioids are the most effective drugs used for the management of moderate to severe pain; however, their chronic use is often associated with numerous adverse effects. Some results indicate the involvement of oxidative stress as well as of proteasome function in the development of some opioid-related side effects including analgesic tolerance, opioid-induced hyperalgesia (OIH) and dependence. Based on the evidence, this study investigated the impact of morphine, buprenorphine or tapentadol on intracellular reactive oxygen species levels (ROS), superoxide dismutase activity/gene expression, as well as ß2 and ß5 subunit proteasome activity/biosynthesis in SH-SY5Y cells. Results showed that tested opioids differently altered ROS production and SOD activity/biosynthesis. Indeed, the increase in ROS production and the reduction in SOD function elicited by morphine were not shared by the other opioids. Moreover, tested drugs produced distinct changes in ß2(trypsin-like) and ß5(chymotrypsin-like) proteasome activity and biosynthesis. In fact, while prolonged morphine exposure significantly increased the proteolytic activity of both subunits and ß5 mRNA levels, buprenorphine and tapentadol either reduced or did not alter these parameters. These results, showing different actions of the selected opioid drugs on the investigated parameters, suggest that a low µ receptor intrinsic efficacy could be related to a smaller oxidative stress and proteasome activation and could be useful to shed more light on the role of the investigated cellular processes in the occurrence of these opioid drug side effects.


Asunto(s)
Buprenorfina , Neuroblastoma , Humanos , Analgésicos Opioides/efectos adversos , Complejo de la Endopetidasa Proteasomal , Neuroblastoma/tratamiento farmacológico , Tapentadol , Morfina/efectos adversos
3.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671048

RESUMEN

Previous studies have shown that genetically selected Marchigian Sardinian alcohol-preferring (msP) rats consume excessive amounts of ethanol to self-medicate from negative moods and to relieve innate hypersensitivity to stress. This phenotype resembling a subset of alcohol use disorder (AUD) patients, appears to be linked to a dysregulation of the equilibrium between stress and antistress mechanisms in the extended amygdala. Here, comparing water and alcohol exposed msP and Wistar rats we evaluate the transcript expression of the anti-stress opioid-like peptide nociceptin/orphanin FQ (N/OFQ) and its receptor NOP as well as of dynorphin (DYN) and its cognate κ-opioid receptor (KOP). In addition, we measured the transcript levels of corticotropin-releasing factor (CRF), CRF receptor 1 (CRF1R), brain-derived neurotrophic factor (BDNF) and of the tropomyosin receptor kinase B receptor (Trk-B). Results showed an innately up-regulation of the CRFergic system, mediating negative mood and stress responses, as well as an inherent up-regulation of the anti-stress N/OFQ system, both in the amygdala (AMY) and bed nucleus of the stria terminalis (BNST) of msP rats. The up-regulation of this latter system may reflect an attempt to buffer the negative condition elicited by the hyperactivity of pro-stress mechanisms since results showed that voluntary alcohol consumption dampened N/OFQ. Alcohol exposure also reduced the expression of dynorphin and CRF transmissions in the AMY of msP rats. In the BNST, alcohol intake led to a more complex reorganization of these systems increasing receptor transcripts in msP rats, along with an increase of CRF and a decrease of N/OFQ transcripts, respectively. Moreover, mimicking the effects of alcohol in the AMY we observed that the activation of NOP receptor by intracerebroventricular administration of N/OFQ in msP rats caused an increase of BDNF and a decrease of CRF transcripts. Our study indicates that both stress and anti-stress mechanisms are dysregulated in the extended AMY of msP rats. The voluntary alcohol drinking, as well as NOP agonism, have a significant impact on neuropeptidergic systems arrangement, bringing the systems back to normalization.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Alcoholismo/patología , Amígdala del Cerebelo/patología , Dinorfinas/farmacología , Etanol/toxicidad , Péptidos Opioides/farmacología , Fragmentos de Péptidos/farmacología , Receptores Opioides/metabolismo , Alcoholismo/etiología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal , Masculino , Neurotransmisores/farmacología , Ratas , Ratas Wistar , Receptores Opioides/genética
4.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769347

RESUMEN

Chemotherapy-induced neuropathy (CIN) is a major adverse effect associated with many chemotherapeutics, including bortezomib (BTZ). Several mechanisms are involved in CIN, and recently a role has been proposed for prokineticins (PKs), a chemokine family that induces proinflammatory/pro-algogen mediator release and drives the epigenetic control of genes involved in cellular differentiation. The present study evaluated the relationships between epigenetic mechanisms and PKs in a mice model of BTZ-induced painful neuropathy. To this end, spinal cord alterations of histone demethylase KDM6A, nuclear receptors PPARα/PPARγ, PK2, and pro-inflammatory cytokines IL-6 and IL-1ß were assessed in neuropathic mice treated with the PK receptors (PKRs) antagonist PC1. BTZ treatment promoted a precocious upregulation of KDM6A, PPARs, and IL-6, and a delayed increase of PK2 and IL-1ß. PC1 counteracted allodynia and prevented the increase of PK2 and of IL-1ß in BTZ neuropathic mice. The blockade of PKRs signaling also opposed to KDM6A increase and induced an upregulation of PPAR gene transcription. These data showed the involvement of epigenetic modulatory enzymes in spinal tissue phenomena associated with BTZ painful neuropathy and underline a role of PKs in sustaining the increase of proinflammatory cytokines and in exerting an inhibitory control on the expression of PPARs through the regulation of KDM6A gene expression in the spinal cord.


Asunto(s)
Bortezomib/toxicidad , Hormonas Gastrointestinales/metabolismo , Histona Demetilasas/metabolismo , Hiperalgesia/patología , Neuropéptidos/metabolismo , Dolor/patología , Enfermedades del Sistema Nervioso Periférico/patología , Médula Espinal/patología , Animales , Antineoplásicos/toxicidad , Citocinas/metabolismo , Hormonas Gastrointestinales/genética , Histona Demetilasas/genética , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Dolor/inducido químicamente , Dolor/genética , Dolor/metabolismo , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Médula Espinal/metabolismo
5.
J Neurosci ; 39(49): 9864-9875, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685649

RESUMEN

An isoform of peroxisome proliferator-activated receptors (PPARs), PPARγ, is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. Neuroanatomical data indicate PPARγ localization in brain areas involved in drug addiction. Preclinical and clinical data have shown that pioglitazone reduces alcohol and opioid self-administration, relapse to drug seeking, and plays a role in emotional responses. Here, we investigated the behavioral effect of PPARγ manipulation on nicotine withdrawal in male Wistar rats and in male mice with neuron-specific PPARγ deletion (PPARγ(-/-)) and their littermate wild-type (PPARγ(+/+)) controls. Real-time quantitative RT-PCR and RNAscope in situ hybridization assays were used for assessing the levels of expression and cell-type localization of PPARγ during nicotine withdrawal. Brain site-specific microinjections of the PPARγ agonist pioglitazone were performed to explore the role of this system on nicotine withdrawal at a neurocircuitry level. Results showed that activation of PPARγ by pioglitazone abolished the expression of somatic and affective nicotine withdrawal signs in rats and in (PPARγ(+/+)) mice. This effect was blocked by the PPARγ antagonist GW9662. During early withdrawal and protracted abstinence, the expression of PPARγ increased in GABAergic and glutamatergic cells of the amygdala and hippocampus, respectively. Hippocampal microinjections of pioglitazone reduced the expression of the physical signs of withdrawal, whereas excessive anxiety associated with protracted abstinence was prevented by pioglitazone microinjection into the amygdala. Our results demonstrate the implication of the neuronal PPARγ in nicotine withdrawal and indicates that activation of PPARγ may offer an interesting strategy for smoking cessation.SIGNIFICANCE STATEMENT Smoking cessation leads the occurrence of physical and affective withdrawal symptoms representing a major burden to quit tobacco use. Here, we show that activation of PPARγ prevents the expression of both somatic and affective signs of nicotine withdrawal. At molecular levels results show that PPARγ expression increases in GABAergic cells in the hippocampus and in GABA- and glutamate-positive cells in the basolateral amygdala. Hippocampal microinjections of pioglitazone reduce the insurgence of the physical withdrawal signs, whereas anxiety linked to protracted abstinence is attenuated by pioglitazone injected into the amygdala. Our results demonstrate the implication of neuronal PPARγ in nicotine withdrawal and suggest that PPARγ agonism may represent a promising treatment to aid smoking cessation.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Hipocampo/fisiopatología , PPAR gamma/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología , Transmisión Sináptica , Afecto , Amígdala del Cerebelo/metabolismo , Anilidas/farmacología , Animales , Ansiedad/etiología , Ansiedad/psicología , Conducta Animal , Hipocampo/metabolismo , Masculino , Ratones Noqueados , Microinyecciones , Neuronas/metabolismo , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , Pioglitazona/administración & dosificación , Pioglitazona/farmacología , Ratas , Ratas Wistar , Cese del Hábito de Fumar/psicología , Síndrome de Abstinencia a Sustancias/psicología , Ácido gamma-Aminobutírico/fisiología
6.
J Pineal Res ; 69(3): e12671, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32430930

RESUMEN

Melatonin, a neurohormone that binds to two G protein-coupled receptors MT1 and MT2, is involved in pain regulation, but the distinct role of each receptor has yet to be defined. We characterized the nociceptive responses of mice with genetic inactivation of melatonin MT1 (MT1 -/- ), or MT2 (MT2 -/- ), or both MT1 /MT2 (MT1 -/- /MT2 -/- ) receptors in the hot plate test (HPT), and the formalin test (FT). In HPT and FT, MT1 -/- display no differences compared to their wild-type littermates (CTL), whereas both MT2 -/- and MT1 -/- /MT2 -/- mice showed a reduced thermal sensitivity and a decreased tonic nocifensive behavior during phase 2 of the FT in the light phase. The MT2 partial agonist UCM924 induced an antinociceptive effect in MT1 -/- but not in MT2 -/- and MT1 -/- /MT2 -/- mice. Also, the competitive opioid antagonist naloxone had no effects in CTL, whereas it induced a decrease of nociceptive thresholds in MT2 -/- mice. Our results show that the genetic inactivation of melatonin MT2 , but not MT1 receptors, produces a distinct effect on nociceptive threshold, suggesting that the melatonin MT2 receptor subtype is selectively involved in the regulation of pain responses.


Asunto(s)
Melatonina , Nocicepción , Receptor de Melatonina MT1 , Receptor de Melatonina MT2 , Animales , Melatonina/genética , Melatonina/metabolismo , Ratones , Ratones Noqueados , Receptor de Melatonina MT1/deficiencia , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/deficiencia , Receptor de Melatonina MT2/metabolismo
7.
Pharmacol Res ; 139: 422-430, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30503841

RESUMEN

Notwithstanding the experimental evidence indicating Withania somnifera Dunal roots extract (WSE) ability to prolong morphine-elicited analgesia, the mechanisms underlying this effect are largely unknown. With the aim of evaluating a PPARγ-mediated mechanism in such WSE effects, we verified the ability of the PPARγ antagonist GW-9662 to modulate WSE actions. Further, we evaluated the influence of GW-9662 upon WSE / morphine interaction in SH-SY5Y cells since we previously reported that WSE hampers the morphine-induced µ-opioid receptor (MOP) receptor down-regulation. Nociceptive thresholds / tolerance development were assessed in different groups of rats receiving vehicles (control), morphine (10 mg/kg; i.p.), WSE (100 mg/kg, i.p.) and PPARγ antagonist GW-9662 (1 mg/kg; s.c.) in acute and chronic schedules of administration. Moreover, the effects of GW-9662 (5 and 10 µM) applied alone and in combination with morphine (10 µM) and/or WSE (0.25 and 1.00 mg/mL) on the MOP gene expression were investigated in cell cultures. Data analysis revealed a functional effect of the PPARγ antagonist in attenuating the ability of WSE to prolong morphine analgesic effect and to reduce tolerance development after repeated administration. In addition, molecular experiments demonstrated that the blockade of PPARγ by GW-9662 promotes MOP mRNA down-regulation and counteracts the ability of 1.00 mg/mL of WSE to keep an adequate MOP receptor availability. In conclusion, our results support the involvement of a PPARγ-mediated mechanism in the WSE effects on morphine-mediated nociception and the likely usefulness of WSE in lengthening the analgesic efficacy of opioids in chronic therapy.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Tolerancia a Medicamentos , Morfina/uso terapéutico , PPAR gamma/metabolismo , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Withania , Anilidas/farmacología , Animales , Línea Celular Tumoral , Humanos , Masculino , Dolor/metabolismo , Ratas Sprague-Dawley
8.
Handb Exp Pharmacol ; 254: 141-162, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30689088

RESUMEN

Over the years, the ability of N/OFQ-NOP receptor system in modulating several physiological functions, including the release of neurotransmitters, anxiety-like behavior responses, modulation of the reward circuitry, inflammatory signaling, nociception, and motor function, has been examined in several brain regions and at spinal level. This chapter collects information related to the genes encoding the ppN/OFQ and NOP receptor, their regulation, and relative transcriptional control mechanisms. Furthermore, genetic manipulations, polymorphisms, and epigenetic alterations associated with different pathological conditions are discussed. The evidence here collected indicates that the study of ppN/OFQ and NOP receptor gene expression may offer novel opportunities in the field of personalized therapies and highlights this system as a good "druggable target" for different pathological conditions.


Asunto(s)
Ansiedad , Encéfalo/fisiología , Péptidos Opioides/química , Expresión Génica , Regulación de la Expresión Génica , Péptidos Opioides/metabolismo , Péptidos Opioides/farmacología , Nociceptina
9.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426473

RESUMEN

It is well known that emotions can interfere with the perception of physical pain, as well as with the development and maintenance of painful conditions. On the other hand, somatic pain can have significant consequences on an individual's affective behavior. Indeed, pain is defined as a complex and multidimensional experience, which includes both sensory and emotional components, thus exhibiting the features of a highly subjective experience. Over the years, neural pathways involved in the modulation of the different components of pain have been identified, indicating the existence of medial and lateral pain systems, which, respectively, project from medial or lateral thalamic nuclei to reach distinct cortex regions relating to specific functions. However, owing to the limited information concerning how mood state and painful input affect each other, pain treatment is frequently unsatisfactory. Different neuromodulators, including endogenous neuropeptides, appear to be involved in pain-related emotion and in its affective influence on pain perception, thus playing key roles in vulnerability and clinical outcome. Hence, this review article focuses on evidence concerning the modulation of the sensory and affective dimensions of pain, with particular attention given to some selected neuropeptidergic system contributions.


Asunto(s)
Emociones , Neuropéptidos/fisiología , Dolor , Animales , Corteza Cerebral , Metilación de ADN , Epigénesis Genética , Humanos , Vías Nerviosas
10.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901925

RESUMEN

Intracellular signaling mechanisms underlying the opioid system regulation of nociception, neurotransmitters release, stress responses, depression, and the modulation of reward circuitry have been investigated from different points of view. The presence of the ubiquitin proteasome system (UPS) in the synaptic terminations suggest a potential role of ubiquitin-dependent mechanisms in the control of the membrane occupancy by G protein-coupled receptors (GPCRs), including those belonging to the opioid family. In this review, we focused our attention on the role played by the ubiquitination processes and by UPS in the modulation of opioid receptor signaling and in pathological conditions involving the endogenous opioid system. The collective evidence here reported highlights the potential usefulness of proteasome inhibitors in neuropathic pain, addictive behavior, and analgesia since these molecules can reduce pain behavioral signs, heroin self-administration, and the development of morphine analgesic tolerance. Moreover, the complex mechanisms involved in the effects induced by opioid agonists binding to their receptors include the ubiquitination process as a post-translational modification which plays a relevant role in receptor trafficking and degradation. Hence, UPS modulation may offer novel opportunities to control the balance between therapeutic versus adverse effects evoked by opioid receptor activation, thus, representing a promising druggable target.


Asunto(s)
Analgésicos Opioides/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Opioides/metabolismo , Animales , Humanos , Neuralgia/etiología , Neuralgia/metabolismo , Trastornos Relacionados con Opioides/etiología , Trastornos Relacionados con Opioides/metabolismo , Unión Proteica , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación
11.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-31382568

RESUMEN

(1) Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial non-cell autonomous disease where activation of microglia and astrocytes largely contributes to motor neurons death. Heat shock proteins have been demonstrated to promote neuronal survival and exert a strong anti-inflammatory action in glia. Having previously shown that the pharmacological increase of the histamine content in the central nervous system (CNS) of SOD1-G93A mice decreases neuroinflammation, reduces motor neuron death, and increases mice life span, here we examined whether this effect could be mediated by an enhancement of the heat shock response. (2) Methods: Heat shock protein expression was analyzed in vitro and in vivo. Histamine was provided to primary microglia and NSC-34 motor neurons expressing the SOD1-G93A mutation. The brain permeable histamine precursor histidine was chronically administered to symptomatic SOD1-G93A mice. Spine density was measured by Golgi-staining in motor cortex of histidine-treated SOD1-G93A mice. (3) Results: We demonstrate that histamine activates the heat shock response in cultured SOD1-G93A microglia and motor neurons. In SOD1-G93A mice, histidine augments the protein content of GRP78 and Hsp70 in spinal cord and cortex, where the treatment also rescues type I motor neuron dendritic spine loss. (4) Conclusion: Besides the established histaminergic neuroprotective and anti-inflammatory effects, the induction of the heat shock response in the SOD1-G93A model by histamine confirms the importance of this pathway in the search for successful therapeutic solutions to treat ALS.


Asunto(s)
Respuesta al Choque Térmico/efectos de los fármacos , Histamina/farmacología , Neuronas Motoras/efectos de los fármacos , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Muerte Celular/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/genética , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Respuesta al Choque Térmico/genética , Humanos , Ratones , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/patología , Mutación , Neuroglía/efectos de los fármacos , Neuroglía/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología
12.
BMC Complement Altern Med ; 18(1): 9, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29316911

RESUMEN

BACKGROUND: Behavioral studies demonstrated that the administration of Withania somnifera Dunal roots extract (WSE), prolongs morphine-elicited analgesia and reduces the development of tolerance to the morphine's analgesic effect; however, little is known about the underpinning molecular mechanism(s). In order to shed light on this issue in the present paper we explored whether WSE promotes alterations of µ (MOP) and nociceptin (NOP) opioid receptors gene expression in neuroblastoma SH-SY5Y cells. METHODS: A range of WSE concentrations was preliminarily tested to evaluate their effects on cell viability. Subsequently, the effects of 5 h exposure to WSE (0.25, 0.50 and 1.00 mg/ml), applied alone and in combination with morphine or naloxone, on MOP and NOP mRNA levels were investigated. RESULTS: Data analysis revealed that morphine decreased MOP and NOP receptor gene expression, whereas naloxone elicited their up-regulation. In addition, pre-treatment with naloxone prevented the morphine-elicited gene expression alterations. Interestingly, WSE was able to: a) alter MOP but not NOP gene expression; b) counteract, at its highest concentration, morphine-induced MOP down-regulation, and c) hamper naloxone-induced MOP and NOP up-regulation. CONCLUSION: Present in-vitro data disclose novel evidence about the ability of WSE to influence MOP and NOP opioid receptors gene expression in SH-SY5Y cells. Moreover, our findings suggest that the in-vivo modulation of morphine-mediated analgesia by WSE could be related to the hindering of morphine-elicited opioid receptors down-regulation here observed following WSE pre-treatment at its highest concentration.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neuroblastoma/metabolismo , Extractos Vegetales/farmacología , Receptores Opioides/metabolismo , Withania/química , Línea Celular Tumoral , Supervivencia Celular , Humanos , Extractos Vegetales/química , Raíces de Plantas/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Opioides/genética
13.
Pharmacol Res ; 114: 209-218, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27989838

RESUMEN

The recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) has been shown to produce neurotoxic damage and long-lasting changes in several brain areas. In addition to the involvement of serotoninergic and dopaminergic systems, little information exists about the contribution of nociceptin/orphaninFQ (N/OFQ)-NOP and dynorphin (DYN)-KOP systems in neuronal adaptations evoked by MDMA. Here we investigated the behavioral and molecular effects induced by acute (8mg/kg) or repeated (8mg/kg twice daily for seven days) MDMA exposure. MDMA exposure affected body weight gain and induced hyperlocomotion; this latter effect progressively decreased after repeated administration. Gene expression analysis indicated a down-regulation of the N/OFQ system and an up-regulation of the DYN system in the nucleus accumbens (NAc), highlighting an opposite systems regulation in response to MDMA exposure. Since histone modifications have been strongly associated to the addiction-related maladaptive changes, we examined two permissive (acH3K9 and me3H3K4) and two repressive transcription marks (me3H3K27 and me2H3K9) at the pertinent opioid gene promoter regions. Chromatin immunoprecipitation assays revealed that acute MDMA increased me3H3K4 at the pN/OFQ, pDYN and NOP promoters. Following acute and repeated treatment a significant decrease of acH3K9 at the pN/OFQ promoter was observed, which correlated with gene expression results. Acute treatment caused an acH3K9 increase and a me2H3K9 decrease at the pDYN promoter which matched its mRNA up-regulation. Our data indicate that the activation of the DYNergic stress system together with the inactivation of the N/OFQergic anti-stress system contribute to the neuroadaptive actions of MDMA and offer novel epigenetic information associated with MDMA abuse.


Asunto(s)
Dinorfinas/genética , Código de Histonas/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , Núcleo Accumbens/efectos de los fármacos , Péptidos Opioides/genética , Serotoninérgicos/farmacología , Inhibidores de Captación Adrenérgica/administración & dosificación , Inhibidores de Captación Adrenérgica/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , Núcleo Accumbens/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Ratas Sprague-Dawley , Serotoninérgicos/administración & dosificación , Nociceptina
14.
Addict Biol ; 18(3): 425-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-21507157

RESUMEN

Molecular mechanisms of adaptive transformations caused by alcohol exposure on opioid dynorphin and nociceptin systems have been investigated in the rat brain. Alcohol was intragastrically administered to rats to resemble human drinking with several hours of exposure: water or alcohol (20% in water) at a dose of 1.5 g/kg three times daily for 1 or 5 days. The development of tolerance and dependence were recorded daily. Brains were dissected 30 minutes (1- and 5-day groups) or 1, 3 or 7 days after the last administration for the three other 5-day groups (groups under withdrawal). Specific alterations in opioid genes expression were ascertained. In the amygdala, an up-regulation of prodynorphin and pronociceptin was observed in the 1-day group; moreover, pronociceptin and the kappa opioid receptor mRNAs in the 5-day group and both peptide precursors in the 1-day withdrawal group were also up-regulated. In the prefrontal cortex, an increase in prodynorhin expression in the 1-day group was detected. These data indicate a relevant role of the dynorphinergic system in the negative hedonic states associated with multiple alcohol exposure. The pattern of alterations observed for the nociceptin system appears to be consistent with its role of functional antagonism towards the actions of ethanol associated with other opioid peptides. Our findings could help to the understanding of how alcohol differentially affects the opioid systems in the brain and also suggest the dynorphin and nociceptin systems as possible targets for the treatment and/or prevention of alcohol dependence.


Asunto(s)
Encéfalo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Dinorfinas/genética , Etanol/farmacología , Péptidos Opioides/genética , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/metabolismo , Intoxicación Alcohólica/genética , Intoxicación Alcohólica/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Depresores del Sistema Nervioso Central/sangre , Relación Dosis-Respuesta a Droga , Dinorfinas/metabolismo , Encefalinas/metabolismo , Etanol/sangre , Expresión Génica , Masculino , Péptidos Opioides/metabolismo , Precursores de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Reflejo de Enderezamiento/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/etiología , Nociceptina
15.
Front Pharmacol ; 12: 733577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621169

RESUMEN

This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of -68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.

16.
Brain Res Bull ; 175: 158-167, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339779

RESUMEN

Fabry disease (FD) is an X-linked inherited disorder characterized by glycosphingolipid accumulation due to deficiency of α-galactosidase A (α-Gal A) enzyme. Chronic pain and mood disorders frequently coexist in FD clinical setting, however underlying pathophysiologic mechanisms are still unclear. Here we investigated the mechanical and thermal sensitivity in α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. We also characterized the gene expression of dynorphinergic, nociceptinergic and CRFergic systems, known to be involved in pain control and mood disorders, in the prefrontal cortex, amygdala and thalamus of α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. Moreover, KOP receptor protein levels were evaluated in the same areas. Fabry knock-out male, but not female, mice displayed a decreased pain threshold in both mechanical and thermal tests compared to their wild type littermates. In the amygdala and prefrontal cortex, we observed a decrease of pDYN mRNA levels in males, whereas an increase was assessed in females, thus suggesting sex-related dysregulation of stress coping and pain mechanisms. Elevated mRNA levels for pDYN/KOP and CRF/CRFR1 systems were observed in male and female thalamus, a critical crossroad for both painful signals and cognitive/emotional processes. KOP receptor protein level changes assessed in the investigated areas, appeared mostly in agreement with KOP gene expression alterations. Our data suggest that α-Gal A enzyme deficiency in male and female mice is associated with distinct neuropeptide gene and protein expression dysregulations of investigated systems, possibly related to the neuroplasticity underlying the neurological features of FD.


Asunto(s)
Conducta Animal , Enfermedad de Fabry/psicología , Neuropéptidos/metabolismo , Nocicepción , Animales , Química Encefálica/genética , Hormona Liberadora de Corticotropina , Dinorfinas/genética , Femenino , Expresión Génica , Masculino , Ratones , Ratones Noqueados , Nociceptores , Umbral del Dolor , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores Opioides kappa/genética , Caracteres Sexuales
17.
Front Pharmacol ; 12: 713486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512343

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is an amphetamine-related drug that may damage the dopaminergic nigrostriatal system. To investigate the mechanisms that sustain this toxic effect and ascertain their sex-dependence, we evaluated in the nigrostriatal system of MDMA-treated (4 × 20 mg/kg, 2 h apart) male and female mice the activity of superoxide dismutase (SOD), the gene expression of SOD type 1 and 2, together with SOD1/2 co-localization with tyrosine hydroxylase (TH)-positive neurons. In the same mice and brain areas, activity of glutathione peroxidase (GPx) and of ß2/ß5 subunits of the ubiquitin-proteasome system (UPS) were also evaluated. After MDMA, SOD1 increased in striatal TH-positive terminals, but not nigral neurons, of males and females, while SOD2 increased in striatal TH-positive terminals and nigral neurons of males only. Moreover, after MDMA, SOD1 gene expression increased in the midbrain of males and females, whereas SOD2 increased only in males. Finally, MDMA increased the SOD activity in the midbrain of females, without affecting GPx activity, decreased the ß2/ß5 activities in the striatum of males and the ß2 activity in the midbrain of females. These results suggest that the mechanisms of MDMA-induced neurotoxic effects are sex-dependent and dopaminergic neurons of males could be more sensitive to SOD2- and UPS-mediated toxic effects.

18.
Ther Clin Risk Manag ; 16: 821-837, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982255

RESUMEN

In patients suffering from moderate-to-severe chronic kidney disease (CKD) or end-stage renal disease (ESRD), subjected to hemodialysis (HD), pain is very common, but often underestimated. Opioids are still the mainstay of severe chronic pain management; however, their prescription in CKD and HD patients is still significantly low and pain is often under-treated. Altered pharmacokinetics and the lack of clinical trials on the use of opioids in patients with renal impairment increase physicians' concerns in this specific population. This narrative review focused on the correct and safe use of opioids in patients with CKD and HD. Morphine and codeine are not recommended, because the accumulation of their metabolites may cause neurotoxic symptoms. Oxycodone and hydromorphone can be safely used, but adequate dosage adjustments are required in CKD. In dialyzed patients, these opioids should be considered as second-line agents and patients should be carefully monitored. According to different studies, buprenorphine and fentanyl could be considered first-line opioids in the management of pain in CKD; however, fentanyl is not appropriate in patients undergoing HD. Tapentadol does not need dosage adjustment in mild-to-moderate renal impairment conditions; however, no data are available on its use in ESRD. Opioid-related side effects may be exacerbated by common comorbidities in CKD patients. Opioid-induced constipation can be managed with peripherally-acting-µ-opioid-receptor-antagonists (PAMORA). Unlike the other PAMORA, naldemedine does not require any dose adjustment in CKD and HD patients. Accurate pain diagnosis, opioid titration and tailoring are mandatory to minimize the risks and to improve the outcome of the analgesic therapy.

19.
Biochem Pharmacol ; 182: 114255, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33010214

RESUMEN

Oxaliplatin-induced neuropathy (OXAIN) is a major adverse effect of this antineoplastic drug, widely used in the treatment of colorectal cancer. Although its molecular mechanisms remain poorly understood, recent evidence suggest that maladaptive neuroplasticity and oxidative stress may participate to the development of this neuropathy. Given the role played on protein remodeling by ubiquitin-proteasome system (UPS) in response to oxidative stress and in neuropathic pain, we investigated whether oxaliplatin might cause alterations in the UPS-mediated degradation pathway, in order to identify new pharmacological tools useful in OXAIN. In a rat model of OXAIN (2.4 mg kg-1 i.p., daily for 10 days), a significant increase in chymotrypsin-(ß5) like activity of the constitutive proteasome 26S was observed in the thalamus (TH) and somatosensory cortex (SSCx). In addition, the selective up-regulation of ß5 and LMP7 (ß5i) subunit gene expression was assessed in the SSCx. Furthermore, this study revealed that oprozomib, a selective ß5 subunit proteasome inhibitor, is able to normalize the spinal prodynorphin gene expression upregulation induced by oxaliplatin, as well as to revert mechanical allodynia and thermal hyperalgesia observed in oxaliplatin-treated rats. These results underline the relevant role of UPS in the OXAIN and suggest new pharmacological targets to counteract this severe adverse effect. This preclinical study reveals the involvement of the proteasome in the oxaliplatin-induced neuropathy and adds useful information to better understand the molecular mechanism underlying this pain condition. Moreover, although further evidence is required, these findings suggest that oprozomib could be a therapeutic option to counteract chemotherapy-induced neuropathy.


Asunto(s)
Antineoplásicos/toxicidad , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Oxaliplatino/toxicidad , Inhibidores de Proteasoma/uso terapéutico , Animales , Neuralgia/patología , Oligopéptidos/farmacología , Inhibidores de Proteasoma/farmacología , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/patología
20.
Br J Pharmacol ; 177(7): 1525-1537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31713848

RESUMEN

BACKGROUND AND PURPOSE: Nociceptin/orphanin FQ (N/OFQ) peptide and its cognate receptor (NOP) are widely expressed in mesolimbic brain regions where they play an important role in modulating reward and motivation. Early evidence suggested that NOP receptor activation attenuates the rewarding effects of drugs of abuse, including alcohol. However, emerging data indicate that NOP receptor blockade also effectively attenuates alcohol drinking and relapse. To advance our understanding of the role of the N/OFQ-NOP receptor system in alcohol abuse, we examined the effect of NOP receptor blockade on voluntary alcohol drinking at the neurocircuitry level. EXPERIMENTAL APPROACH: Using male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats, we initially evaluated the effects of the selective NOP receptor antagonist LY2817412 (3, 10, and 30 mg·kg-1 , p.o.) on alcohol consumption in a two-bottle free-choice paradigm. We then microinjected LY2817412 (3 and 6 µg·µl-1 per rat) in the central nucleus of the amygdala (CeA), ventral tegmental area (VTA), and nucleus accumbens (NAc). KEY RESULTS: Peripheral LY2817412 administration dose-dependently and selectively reduced voluntary alcohol intake in male and female msP rats. Central injections of LY2817412 markedly attenuated voluntary alcohol intake in both sexes following administration in the CeA and VTA but not in the NAc. CONCLUSION AND IMPLICATIONS: The present results revealed that the CeA and VTA are neuroanatomical substrates that mediate the effects of NOP receptor antagonism on alcohol consumption. Overall, our findings support the potential of NOP receptor antagonism as a treatment strategy to attenuate alcohol use and addiction.


Asunto(s)
Núcleo Amigdalino Central , Preparaciones Farmacéuticas , Consumo de Bebidas Alcohólicas , Animales , Núcleo Amigdalino Central/metabolismo , Femenino , Masculino , Péptidos Opioides/metabolismo , Ratas , Receptores Opioides/metabolismo , Área Tegmental Ventral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA