Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837726

RESUMEN

Degranulation, a fundamental effector response from mast cells (MCs) and platelets, is an example of regulated exocytosis. This process is mediated by SNARE proteins and their regulators. We have previously shown that several of these proteins are essential for exocytosis in MCs and platelets. Here, we assessed the role of the SNARE protein SNAP23 using conditional knockout mice, in which SNAP23 was selectively deleted from either the megakaryocyte/platelet or connective tissue MC lineages. We found that removal of SNAP23 in platelets results in severe defects in degranulation of all three platelet secretory granule types, i.e., alpha, dense, and lysosomal granules. The mutation also induces thrombocytopenia, abnormal platelet morphology and activation, and reduction in the number of alpha granules. Therefore, the degranulation defect might not be secondary to an intrinsic failure of the machinery mediating regulated exocytosis in platelets. When we removed SNAP23 expression in MCs, there was a complete developmental failure in vitro and in vivo. The developmental defects in platelets and MCs and the abnormal translocation of membrane proteins to the surface of platelets indicate that SNAP23 is also involved in constitutive exocytosis in these cells. The MC conditional deletant animals lacked connective tissue MCs, but their mucosal MCs were normal and expanded in response to an antigenic stimulus. We used this mouse to show that connective tissue MCs are required and mucosal MCs are not sufficient for an anaphylactic response.


Asunto(s)
Anafilaxia/inmunología , Plaquetas/inmunología , Tejido Conectivo/inmunología , Mastocitos/inmunología , Proteínas Qb-SNARE/inmunología , Proteínas Qc-SNARE/inmunología , Anafilaxia/genética , Anafilaxia/patología , Animales , Plaquetas/patología , Tejido Conectivo/patología , Exocitosis/genética , Exocitosis/inmunología , Mastocitos/patología , Ratones , Ratones Noqueados , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Vesículas Secretoras/genética , Vesículas Secretoras/inmunología
2.
J Biol Chem ; 294(13): 4784-4792, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696774

RESUMEN

Platelet degranulation, a form of regulated exocytosis, is crucial for hemostasis and thrombosis. Exocytosis in platelets is mediated by SNARE proteins, and in most mammalian cells this process is controlled by Munc18 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 18) proteins. Platelets express all Munc18 paralogs (Munc18-1, -2, and -3), but their roles in platelet secretion and function have not been fully characterized. Using Munc18-1, -2, and -3 conditional knockout mice, here we deleted expression of these proteins in platelets and assessed granule exocytosis. We measured products secreted by each type of platelet granule and analyzed EM platelet profiles by design-based stereology. We observed that the removal of Munc18-2 ablates the release of alpha, dense, and lysosomal granules from platelets, but we found no exocytic role for Munc18-1 or -3 in platelets. In vitro, Munc18-2-deficient platelets exhibited defective aggregation at low doses of collagen and impaired thrombus formation under shear stress. In vivo, megakaryocyte-specific Munc18-2 conditional knockout mice had a severe hemostatic defect and prolonged arterial and venous bleeding times. They were also protected against arterial thrombosis in a chemically induced model of arterial injury. Taken together, our results indicate that Munc18-2, but not Munc18-1 or Munc18-3, is essential for regulated exocytosis in platelets and platelet participation in thrombosis and hemostasis.


Asunto(s)
Plaquetas/metabolismo , Exocitosis , Hemostasis , Proteínas Munc18/metabolismo , Vesículas Secretoras/metabolismo , Trombosis/metabolismo , Animales , Plaquetas/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Proteínas Munc18/genética , Vesículas Secretoras/genética , Vesículas Secretoras/patología , Trombosis/genética , Trombosis/patología
3.
J Biol Chem ; 294(9): 3012-3023, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30563839

RESUMEN

Mast cells (MCs) participate in allergy, inflammation, and defense against pathogens. They release multiple immune mediators via exocytosis, a process that requires SNARE proteins, including syntaxins (Stxs). The identity of the Stxs involved in MC exocytosis remains controversial. Here, we studied the roles of Stx3 and -4 in fully developed MCs from conditional knockout mice by electrophysiology and EM, and found that Stx3, and not Stx4, is crucial for MC exocytosis. The main defect seen in Stx3-deficient MCs was their inability to engage multigranular compound exocytosis, while leaving most single-vesicle fusion events intact. We used this defect to show that this form of exocytosis is not only required to accelerate MC degranulation but also essential to achieve full degranulation. The exocytic defect was severe but not absolute, indicating that an Stx other than Stx3 and -4 is also required for exocytosis in MCs. The removal of Stx3 affected only regulated exocytosis, leaving other MC effector responses intact, including the secretion of cytokines via constitutive exocytosis. Our in vivo model of passive systemic anaphylaxis showed that the residual exocytic function of Stx3-deficient MCs was sufficient to drive a full anaphylactic response in mice.


Asunto(s)
Exocitosis , Mastocitos/citología , Proteínas Qa-SNARE/metabolismo , Animales , Recuento de Células , Degranulación de la Célula , Diferenciación Celular , Técnicas de Inactivación de Genes , Cinética , Ratones , Proteínas Qa-SNARE/deficiencia , Proteínas Qa-SNARE/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA