Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Genomics ; 16: 910, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26547235

RESUMEN

BACKGROUND: We describe the pioneering experience of a Spanish family pursuing the goal of understanding their own personal genetic data to the fullest possible extent using Direct to Consumer (DTC) tests. With full informed consent from the Corpas family, all genotype, exome and metagenome data from members of this family, are publicly available under a public domain Creative Commons 0 (CC0) license waiver. All scientists or companies analysing these data ("the Corpasome") were invited to return results to the family. METHODS: We released 5 genotypes, 4 exomes, 1 metagenome from the Corpas family via a blog and figshare under a public domain license, inviting scientists to join the crowdsourcing efforts to analyse the genomes in return for coauthorship or acknowldgement in derived papers. Resulting analysis data were compiled via social media and direct email. RESULTS: Here we present the results of our investigations, combining the crowdsourced contributions and our own efforts. Four companies offering annotations for genomic variants were applied to four family exomes: BIOBASE, Ingenuity, Diploid, and GeneTalk. Starting from a common VCF file and after selecting for significant results from company reports, we find no overlap among described annotations. We additionally report on a gut microbiome analysis of a member of the Corpas family. CONCLUSIONS: This study presents an analysis of a diverse set of tools and methods offered by four DTC companies. The striking discordance of the results mirrors previous findings with respect to DTC analysis of SNP chip data, and highlights the difficulties of using DTC data for preventive medical care. To our knowledge, the data and analysis results from our crowdsourced study represent the most comprehensive exome and analysis for a family quartet using solely DTC data generation to date.


Asunto(s)
Colaboración de las Masas , Familia , Pruebas Genéticas , Genómica , Colaboración de las Masas/métodos , Exoma , Femenino , Frecuencia de los Genes , Pruebas Genéticas/métodos , Genómica/métodos , Genotipo , Humanos , Masculino , Metagenoma , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Carácter Cuantitativo Heredable , España
2.
J Exp Bot ; 63(2): 1025-38, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22025521

RESUMEN

The species Brassica rapa includes various vegetable crops. Production of these vegetable crops is usually impaired by heat stress. Some microRNAs (miRNAs) in Arabidopsis have been considered to mediate gene silencing in plant response to abiotic stress. However, it remains unknown whether or what miRNAs play a role in heat resistance of B. rapa. To identify genomewide conserved and novel miRNAs that are responsive to heat stress in B. rapa, we defined temperature thresholds of non-heading Chinese cabbage (B. rapa ssp. chinensis) and constructed small RNA libraries from the seedlings that had been exposed to high temperature (46 °C) for 1 h. By deep sequencing and data analysis, we selected a series of conserved and novel miRNAs that responded to heat stress. In total, Chinese cabbage shares at least 35 conserved miRNA families with Arabidopsis thaliana. Among them, five miRNA families were responsive to heat stress. Northern hybridization and real-time PCR showed that the conserved miRNAs bra-miR398a and bra-miR398b were heat-inhibitive and guided heat response of their target gene, BracCSD1; and bra-miR156h and bra-miR156g were heat-induced and its putative target BracSPL2 was down-regulated. According to the criteria of miRNA and miRNA* that form a duplex, 21 novel miRNAs belonging to 19 miRNA families were predicted. Of these, four were identified to be heat-responsive by Northern blotting and/or expression analysis of the putative targets. The two novel miRNAs bra-miR1885b.3 and bra-miR5718 negatively regulated their putative target genes. 5'-Rapid amplification of cDNA ends PCR indicated that three novel miRNAs cleaved the transcripts of their target genes where their precursors may have evolved from. These results broaden our perspective on the important role of miRNA in plant responses to heat.


Asunto(s)
Brassica rapa/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Calor , MicroARNs/metabolismo , Estrés Fisiológico/fisiología , Secuencia de Bases , Brassica rapa/genética , Brassica rapa/metabolismo , Regulación hacia Abajo/fisiología , Evolución Molecular , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Datos de Secuencia Molecular , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
3.
F1000Res ; 1: 3, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24627758

RESUMEN

Direct-to-consumer (DTC) genetic testing is a recent commercial endeavor that allows the general public to access personal genomic data. The growing availability of personal genomic data has in turn stimulated the development of non-commercial tools for DTC data analysis. Despite this new wealth of public resources, no systematic research has been carried out to assess these tools for interpretation of DTC data. Here, we provide an initial analysis benchmark in the context of a whole family, using single nucleotide polymorphism (SNP) data. Five blood-related DTC SNP chip data tests were analyzed in conjunction with one whole exome sequence. We report findings related to genomic similarity between individuals, genetic risks and an overall assessment of data quality; thus providing an evaluation of the current potential of public domain analysis tools for personal genomics. We envisage that as the use of personal genome tests spreads to the general population, publicly available tools will have a more prominent role in the interpretation of genomic data in the context of health risks and ancestry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA