Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 18(1): 38, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767768

RESUMEN

BACKGROUND: Rodent malaria models are extensively used to predict treatment outcomes in human infections. There is a constant need to improve and refine these models by innovating ways to apply new scientific findings and cutting edge technologies. In addition, and in accordance with the three R's of animal use in research, in vivo studies should be constantly refined to avoid unnecessary pain and distress to the experimental animals by using preemptive euthanasia as soon as the main scientific study objective has been accomplished. METHODS: The new methodology described in this manuscript uses the whole-body bioluminescence signal emitted by transgenic, luciferase-expressing Plasmodium berghei parasites to assess the parasite load predicted parasitaemia (PLPP) in drug and control treated female ICR-CD1 mice infected with 1 × 105 luciferase-expressing P. berghei (ANKA strain) infected erythrocytes. This methodology can replace other time-consuming and expensive methods that are routinely used to measure parasitaemia in infected animals, such as Giemsa-stained thin blood smears and flow cytometry. RESULTS: There is a good correlation between whole-body bioluminescence signal and parasitaemia measured using Giemsa-stained thin blood smears and flow cytometry respectively in donor and study mice in the modified Thompson test. The algebraic formulas which represent these correlations can be successfully used to assess PLPP in donor and study mice. In addition, the new methodology can pinpoint sick animals 2-8 days before they would have been otherwise diagnosed based on behavioural or any other signs of malaria disease. CONCLUSIONS: The new method for predicting parasitaemia in the modified Thompson test is simple, precise, objective, and minimizes false positive results that can lead to the premature removal of animals from study. Furthermore, from the animal welfare perspective of replace, reduce, and refine, this new method facilitates early removal of sick animals from study as soon as the study objective has been achieved, in many cases well before the clinical signs of disease are present.


Asunto(s)
Antimaláricos/administración & dosificación , Modelos Animales de Enfermedad , Mediciones Luminiscentes/métodos , Malaria/diagnóstico por imagen , Carga de Parásitos , Parasitemia/diagnóstico por imagen , Imagen de Cuerpo Entero/métodos , Animales , Femenino , Genes Reporteros , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Ratones Endogámicos ICR , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Coloración y Etiquetado , Resultado del Tratamiento
2.
Artículo en Inglés | MEDLINE | ID: mdl-28137819

RESUMEN

In any drug discovery and development effort, a reduction in the time of the lead optimization cycle is critical to decrease the time to license and reduce costs. In addition, ethical guidelines call for the more ethical use of animals to minimize the number of animals used and decrease their suffering. Therefore, any effort to develop drugs to treat cutaneous leishmaniasis requires multiple tiers of in vivo testing that start with higher-throughput efficacy assessments and progress to lower-throughput models with the most clinical relevance. Here, we describe the validation of a high-throughput, first-tier, noninvasive model of lesion suppression that uses an in vivo optical imaging technology for the initial screening of compounds. A strong correlation between luciferase activity and the parasite load at up to 18 days postinfection was found. This correlation allows the direct assessment of the effects of drug treatment on parasite burden. We demonstrate that there is a strong correlation between drug efficacy measured on day 18 postinfection and the suppression of lesion size by day 60 postinfection, which allows us to reach an accurate conclusion on drug efficacy in only 18 days. Compounds demonstrating a significant reduction in the bioluminescence signal compared to that in control animals can be tested in lower-throughput, more definitive tests of lesion cure in BALB/c mice and Golden Syrian hamsters (GSH) using Old World and New World parasites.


Asunto(s)
Antiprotozoarios/farmacología , Ensayos Analíticos de Alto Rendimiento , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Organismos Modificados Genéticamente , Anfotericina B/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/economía , Evaluación Preclínica de Medicamentos/métodos , Femenino , Luciferina de Luciérnaga/administración & dosificación , Fluconazol/farmacología , Genes Reporteros , Leishmania major/genética , Leishmania major/crecimiento & desarrollo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Macrófagos/citología , Macrófagos/efectos de los fármacos , Meglumina/farmacología , Antimoniato de Meglumina , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ofloxacino/farmacología , Imagen Óptica , Compuestos Organometálicos/farmacología , Triazoles/farmacología
3.
Malar J ; 15(1): 588, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27923405

RESUMEN

BACKGROUND: Due to the ability of the 8-aminoquinolines (8AQs) to kill different stages of the malaria parasite, primaquine (PQ) and tafenoquine (TQ) are vital for causal prophylaxis and the eradication of erythrocytic Plasmodium sp. parasites. Recognizing the potential role of cytochrome (CYP) 450 2D6 in the metabolism and subsequent hepatic efficacy of 8-aminoquinolines, studies were designed to explore whether CYP2D-mediated metabolism was related to the ability of single-dose PQ and TQ to eliminate the asexual and sexual erythrocytic stages of Plasmodium berghei. METHODS: An IV P. berghei sporozoite murine challenge model was utilized to directly compare causal prophylactic and erythrocytic activity (asexual and sexual parasite stages) dose-response relationships in C57BL/6 wild-type (WT) mice and subsequently compare the erythrocytic activity of PQ and TQ in WT and CYP2D knock-out (KO) mice. RESULTS: Single-dose administration of either 25 mg/kg TQ or 40 mg/kg PQ eradicated the erythrocytic stages (asexual and sexual) of P. berghei in C57BL WT and CYP2D KO mice. In WT animals, the apparent elimination of hepatic infections occurs at lower doses of PQ than are required to eliminate erythrocytic infections. In contrast, the minimally effective dose of TQ needed to achieve causal prophylaxis and to eradicate erythrocytic parasites was analogous. CONCLUSION: The genetic deletion of the CYP2D cluster does not affect the ability of PQ or TQ to eradicate the blood stages (asexual and sexual) of P. berghei after single-dose administration.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Citocromo P-450 CYP2D6/metabolismo , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Primaquina/farmacología , Aminoquinolinas/administración & dosificación , Animales , Antimaláricos/administración & dosificación , Quimioprevención/métodos , Citocromo P-450 CYP2D6/deficiencia , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia/métodos , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Primaquina/administración & dosificación , Resultado del Tratamiento
4.
Malar J ; 13: 141, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24731238

RESUMEN

BACKGROUND: As anti-malarial drug resistance escalates, new safe and effective medications are necessary to prevent and treat malaria infections. The US Army is developing tafenoquine (TQ), an analogue of primaquine (PQ), which is expected to be more effective in preventing malaria in deployed military personnel. METHODS: To compare the prophylactic efficacy of TQ and PQ, a transgenic Plasmodium berghei parasite expressing the bioluminescent reporter protein luciferase was utilized to visualize and quantify parasite development in C57BL/6 albino mice treated with PQ and TQ in single or multiple regimens using a real-time in vivo imaging system (IVIS). As an additional endpoint, blood stage parasitaemia was monitored by flow cytometry. Comparative pharmacokinetic (PK) and liver distribution studies of oral and intravenous PQ and TQ were also performed. RESULTS: Mice treated orally with three doses of TQ at 5 mg/kg three doses of PQ at 25 mg/kg demonstrated no bioluminescence liver signal and no blood stage parasitaemia was observed suggesting both drugs showed 100% causal activity at the doses tested. Single dose oral treatment with 5 mg TQ or 25 mg of PQ, however, yielded different results as only TQ treatment resulted in causal prophylaxis in P. berghei sporozoite-infected mice. TQ is highly effective for causal prophylaxis in mice at a minimal curative single oral dose of 5 mg/kg, which is a five-fold improvement in potency versus PQ. PK studies of the two drugs administered orally to mice showed that the absolute bioavailability of oral TQ was 3.5-fold higher than PQ, and the AUC of oral TQ was 94-fold higher than oral PQ. The elimination half-life of oral TQ in mice was 28 times longer than PQ, and the liver tissue distribution of TQ revealed an AUC that was 188-fold higher than PQ. CONCLUSIONS: The increased drug exposure levels and longer exposure time of oral TQ in the plasma and livers of mice highlight the lead quality attributes that explain the much improved efficacy of TQ when compared to PQ.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Primaquina/uso terapéutico , Aminoquinolinas/sangre , Aminoquinolinas/farmacocinética , Animales , Antimaláricos/sangre , Antimaláricos/farmacocinética , Área Bajo la Curva , Citometría de Flujo , Semivida , Hígado/parasitología , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Plasmodium berghei/crecimiento & desarrollo , Primaquina/sangre , Primaquina/farmacocinética , Esporozoítos/efectos de los fármacos , Esporozoítos/crecimiento & desarrollo
5.
Malar J ; 13: 2, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24386891

RESUMEN

BACKGROUND: Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. METHODS: In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. RESULTS: NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. CONCLUSIONS: The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.


Asunto(s)
Aminoquinolinas/metabolismo , Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Succinatos/metabolismo , Animales , Citocromo P-450 CYP2D6/genética , Relación Dosis-Respuesta a Droga , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Eur J Drug Metab Pharmacokinet ; 39(4): 231-6, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24705994

RESUMEN

The use of mefloquine (MQ) for antimalarial treatment and prophylaxis has diminished largely in response to concerns about its neurologic side effects. An analog campaign designed to maintain the efficacy of MQ while minimizing blood-brain barrier (BBB) penetration has resulted in the synthesis of a prodrug with comparable-to-superior in vivo efficacy versus mefloquine in a P. berghei mouse model while exhibiting a sixfold reduction in CNS drug levels. The prodrug, WR319670, performed poorly compared to MQ in in vitro efficacy assays, but had promising in vitro permeability in an MDCK-MDR1 cell line BBB permeability screen. Its metabolite, WR308245, exhibited high predicted BBB penetration with excellent in vitro efficacy. Both WR319670 and WR308245 cured 5/5 animals in separate in vivo efficacy studies. The in vivo efficacy of WR319670 was thought to be due to the formation of a more active metabolite, specifically WR308245. This was supported by pharmacokinetics studies in non-infected mice, which showed that both IV and oral administration of WR319670 produced essentially identical levels of WR319670 and WR308245 in both plasma and brain samples at all time points. In these studies, the levels of WR308245 in the brain were 1/4 and 1/6 that of MQ in similar IV and oral studies, respectively. These data show that the use of WR319670 as an antimalarial prodrug was able to maintain efficacy in in vivo efficacy screens, while significantly lowering overall penetration of drug and metabolites across the BBB.


Asunto(s)
Antimaláricos/farmacocinética , Barrera Hematoencefálica , Mefloquina/análogos & derivados , Profármacos/farmacocinética , Animales , Antimaláricos/farmacología , Masculino , Mefloquina/farmacocinética , Mefloquina/farmacología , Ratones , Ratones Endogámicos ICR , Profármacos/farmacología
7.
J Pers Med ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276233

RESUMEN

We sought to better understand the utility and role of animal models of infection for Food and Drug Administration (FDA)-approved antibiotics for the indications of community-, hospital-acquired-, and ventilator-associated bacterial pneumonia (CABP, HABP, VABP), complicated urinary tract infection (cUTI), complicated intra-abdominal infection (cIAI), and acute bacterial skin and structural infections (ABSSSIs). We reviewed relevant documents from new drug applications (NDA) of FDA-approved antibiotics from 2014-2019 for the above indications. Murine neutropenic thigh infection models supported the choice of a pharmacokinetic-pharmacodynamic (PKPD) target in 11/12 NDAs reviewed. PKPD targets associated with at least a 1-log bacterial decrease were commonly considered ideal (10/12 NDAs) to support breakpoints. Plasma PK, as opposed to organ specific PK, was generally considered most reliable for PKPD correlation. Breakpoint determination was multi-disciplinary, accounting at minimum for epidemiologic cutoffs, non-clinical PKPD, clinical exposure-response and clinical efficacy. Non-clinical PKPD targets in combination with probability of target attainment (PTA) analyses generated breakpoints that were consistent with epidemiologic cutoffs and clinically derived breakpoints. In 6/12 NDAs, there was limited data to support clinically derived breakpoints, and hence the non-clinical PKPD targets in combination with PTA analyses played a heightened role in the final breakpoint determination. Sponsor and FDA breakpoint decisions were in general agreement. Disagreement may have arisen from differences in the definition of the optimal PKPD index or the ability to extrapolate protein binding from animals to humans. Overall, murine neutropenic thigh infection models supported the reviewed NDAs by providing evidence of pre-clinical efficacy and PKPD target determination, and played, in combination with PTA analysis, a significant role in breakpoint determination for labeling purposes.

8.
Clin Transl Sci ; 17(7): e13876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963161

RESUMEN

Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 µM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.


Asunto(s)
Bencilaminas , Ciclamas , Modelos Animales de Enfermedad , Compuestos Heterocíclicos , Receptores CXCR4 , Sepsis , Pez Cebra , Animales , Ciclamas/farmacología , Ciclamas/administración & dosificación , Bencilaminas/farmacología , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/administración & dosificación , Ratones , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Muslo/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Femenino , Lipopolisacáridos , Infección de Heridas/microbiología , Infección de Heridas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
9.
J Med Chem ; 67(10): 8323-8345, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38722757

RESUMEN

Leishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against Plasmodium spp, as a novel class of antileishmanial agents. Herein, we report in vitro and in vivo antileishmanial activities, detailed structure-activity relationships, and metabolic/pharmacokinetic profiles of a large library of tambjamines. A number of tambjamines exhibited excellent potency against both Leishmania mexicana and Leishmania donovani parasites with good safety and metabolic profiles. Notably, tambjamine 110 offered excellent potency and provided partial protection to leishmania-infected mice at 40 and/or 60 mg/kg/10 days of oral treatment. This study presents the first account of antileishmanial activity in the tambjamine family and paves the way for the generation of new oral antileishmanial drugs.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmania mexicana , Animales , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacocinética , Ratones , Leishmania donovani/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Femenino , Leishmaniasis/tratamiento farmacológico , Ratones Endogámicos BALB C
10.
Malar J ; 12: 212, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23782898

RESUMEN

BACKGROUND: The efficacy of the 8-aminoquinoline (8AQ) drug primaquine (PQ) has been historically linked to CYP-mediated metabolism. Although to date no clear evidence exists in the literature that unambiguously assigns the metabolic pathway or specific metabolites necessary for activity, recent literature suggests a role for CYP 2D6 in the generation of redox active metabolites. METHODS: In the present study, the specific CYP 2D6 inhibitor paroxetine was used to assess its effects on the production of specific phenolic metabolites thought to be involved in PQ efficacy. Further, PQ causal prophylactic (developing liver stage) efficacy against Plasmodium berghei in CYP 2D knockout mice was assessed in comparison with a normal C57 background and with humanized CYP 2D6 mice to determine the direct effects of CYP 2D6 metabolism on PQ activity. RESULTS: PQ exhibited no activity at 20 or 40 mg/kg in CYP 2D knockout mice, compared to 5/5 cures in normal mice at 20 mg/kg. The activity against developing liver stages was partially restored in humanized CYP 2D6 mice. CONCLUSIONS: These results unambiguously demonstrate that metabolism of PQ by CYP 2D6 is essential for anti-malarial causal prophylaxis efficacy.


Asunto(s)
Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Primaquina/metabolismo , Animales , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Hidroxilación , Malaria/tratamiento farmacológico , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Plasmodium berghei , Primaquina/química , Primaquina/farmacocinética , Primaquina/uso terapéutico
11.
Eur J Drug Metab Pharmacokinet ; 37(1): 17-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22314893

RESUMEN

Ketotifen is known to exhibit antimalarial activity in mouse and monkey malaria models. However, the low plasma levels and short half life of the drug do not adequately explain its in vivo efficacy. We synthesized most of the known metabolites of ketotifen and evaluated their antimalarial activity and pharmacokinetics in mice. Norketotifen, the de-methylated metabolite of ketotifen, was a more potent antimalarial in vitro as compared to ketotifen, and exhibited equivalent activity in vivo against asexual blood and developing liver-stage parasites. After ketotifen dosing, norketotifen levels were much higher than ketotifen relative to the IC50s of the compounds against Plasmodium falciparum in vitro. The data support the notion that the antimalarial activity of ketotifen in mice is mediated through norketotifen.


Asunto(s)
Antimaláricos/farmacología , Cetotifen/análogos & derivados , Cetotifen/farmacología , Malaria/tratamiento farmacológico , Animales , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Femenino , Humanos , Concentración 50 Inhibidora , Cetotifen/administración & dosificación , Cetotifen/farmacocinética , Hígado/parasitología , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Profármacos
12.
ACS Cent Sci ; 8(8): 1145-1158, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36032774

RESUMEN

Genomic studies and experiments with permeability-deficient strains have revealed a variety of biological targets that can be engaged to kill Gram-negative bacteria. However, the formidable outer membrane and promiscuous efflux pumps of these pathogens prevent many candidate antibiotics from reaching these targets. One such promising target is the enzyme FabI, which catalyzes the rate-determining step in bacterial fatty acid biosynthesis. Notably, FabI inhibitors have advanced to clinical trials for Staphylococcus aureus infections but not for infections caused by Gram-negative bacteria. Here, we synthesize a suite of FabI inhibitors whose structures fit permeation rules for Gram-negative bacteria and leverage activity against a challenging panel of Gram-negative clinical isolates as a filter for advancement. The compound to emerge, called fabimycin, has impressive activity against >200 clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii, and does not kill commensal bacteria. X-ray structures of fabimycin in complex with FabI provide molecular insights into the inhibition. Fabimycin demonstrates activity in multiple mouse models of infection caused by Gram-negative bacteria, including a challenging urinary tract infection model. Fabimycin has translational promise, and its discovery provides additional evidence that antibiotics can be systematically modified to accumulate in Gram-negative bacteria and kill these problematic pathogens.

14.
Malar J ; 10: 150, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21645370

RESUMEN

BACKGROUND: The clinical use of mefloquine (MQ) has declined due to dose-related neurological events. Next generation quinoline methanols (NGQMs) that do not accumulate in the central nervous system (CNS) to the same extent may have utility. In this study, CNS levels of NGQMs relative to MQ were measured and an early lead chemotype was identified for further optimization. EXPERIMENTAL DESIGN: The plasma and brain levels of MQ and twenty five, 4-position modified NGQMs were determined using LCMS/MS at 5 min, 1, 6 and 24 h after IV administration (5 mg/kg) to male FVB mice. Fraction unbound in brain tissue homogenate was assessed in vitro using equilibrium dialysis and this was then used to calculate brain-unbound concentration from the measured brain total concentration. A five-fold reduction CNS levels relative to mefloquine was considered acceptable. Additional pharmacological properties such as permeability and potency were determined. RESULTS: The maximum brain (whole/free) concentrations of MQ were 1807/4.9 ng/g. Maximum whole brain concentrations of NGQMs were 23 - 21546 ng/g. Maximum free brain concentrations were 0.5 to 267 ng/g. Seven (28%) and two (8%) compounds exhibited acceptable whole and free brain concentrations, respectively. Optimization of maximum free brain levels, IC90s (as a measure or potency) and residual plasma concentrations at 24 h (as a surrogate for half-life) in the same molecule may be feasible since they were not correlated. Diamine quinoline methanols were the most promising lead compounds. CONCLUSION: Reduction of CNS levels of NGQMs relative to mefloquine may be feasible. Optimization of this property together with potency and long half-life may be feasible amongst diamine quinoline methanols.


Asunto(s)
Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Sistema Nervioso Central/química , Mefloquina/administración & dosificación , Mefloquina/farmacocinética , Quinolinas/administración & dosificación , Quinolinas/farmacocinética , Animales , Inyecciones Intravenosas , Masculino , Ratones , Plasma/química , Factores de Tiempo
15.
ACS Infect Dis ; 7(2): 506-517, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33529014

RESUMEN

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis affecting human populations, yet CL remains largely ignored in drug discovery programs. CL causes disfiguring skin lesions and often relapses after "clinical cure" using existing therapeutics. To expand the pool of anti-CL lead candidates, we implemented an integrated screening platform comprising three progressive Leishmania parasite life cycle forms. We identified tretazicar (CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide) as a potent inhibitor of Leishmania parasite viability across multiple Leishmania species, which translated into complete and prolonged in vivo suppression of CL lesion formation in BALB/c mice when used as a monotherapy and which was superior to liposomal amphotericin B. In addition, oral twice a day administration of tretazicar healed the majority of existing Leishmania major (L. major) cutaneous lesions. In drug combination studies, there was a strong potentiation when subtherapeutic doses of liposomal amphotericin B and tretazicar were simultaneously administered. This drug combination decreased L. major lesion size in mice earlier than individual monotherapy drug treatments and maintained all animals lesion free for up to 64 days after treatment cessation. In contrast, administration of subtherapeutic doses of tretazicar or amphotericin B as monotherapies resulted in no or partial lesion cures, respectively. We propose that tretazicar should be explored as a component of a systemic CL combination therapy and potentially for other diseases where amphotericin B is a first line therapy.


Asunto(s)
Antiprotozoarios , Leishmania major , Anfotericina B , Animales , Antiprotozoarios/farmacología , Aziridinas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C
16.
Malar J ; 9: 51, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20149249

RESUMEN

BACKGROUND: The clinical utility for mefloquine has been eroded due to its association with adverse neurological effects. Better-tolerated alternatives are required. The objective of the present study was the identification of lead compounds that are as effective as mefloquine, but exhibit physiochemical properties likely to render them less susceptible to passage across the blood-brain barrier. METHODS: A library of drug-like non-piperidine analogs of mefloquine was synthesized. These compounds are diverse in structure and physiochemical properties. They were screened in appropriate in vitro assays and evaluated in terms of their potential as lead compounds. The correlation of specific structural attributes and physiochemical properties with activity was assessed. RESULTS: The most potent analogs were low molecular weight unconjugated secondary amines with no heteroatoms in their side-chains. However, these compounds were more metabolically labile and permeable than mefloquine. In terms of physiochemical properties, lower polar surface area, lower molecular weight, more freely rotatable bonds and fewer H-bond acceptors were associated with greater potency. There was no such relationship between activity and LogP, LogD or the number of hydrogen bond donors (HBDs). The addition of an H-bond donor to the side-chain yielded a series of active diamines, which were as metabolically stable as mefloquine but showed reduced permeability. CONCLUSIONS: A drug-like library of non-piperidine analogs of mefloquine was synthesized. From amongst this library an active lead series of less permeable, but metabolically stable, diamines was identified.


Asunto(s)
Antimaláricos/farmacología , Metanol/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacología , Antimaláricos/farmacocinética , Descubrimiento de Drogas , Hipoxantina , Mefloquina/farmacología , Mefloquina/toxicidad , Metanol/farmacocinética , Permeabilidad , Quinolinas/farmacocinética
17.
Bioorg Med Chem Lett ; 20(13): 3863-7, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20627564

RESUMEN

Cyclin dependent protein kinases (CDKs) are pursued as drug targets for several eukaryotic pathogens. In this study, we identified thiophene and benzene sulfonamides as potent inhibitors of Pfmrk, a Plasmodium falciparum CDK with sequence homology to human CDK7. Several of the compounds demonstrated inhibitor selectivity for CDK7 over CDK1, CDK2, and CDK6. The compounds are moderate antimalarial agents against drug resistant parasites and possess encouraging in vitro therapeutic indices as determined against human cell lines. One particular sub-class of compounds, bromohydrosulfonylacetamides, was specific for Pfmrk with IC(50) values in the sub-micromolar range. These compounds represent the most potent Pfmrk inhibitors reported and provide support for further characterization and derivation as potential antimalarial agents.


Asunto(s)
Antimaláricos/farmacología , Antineoplásicos/farmacología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Sulfonamidas/farmacología , Tiofenos/farmacología , Animales , Antimaláricos/química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Macrófagos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Plasmodium falciparum/efectos de los fármacos , Ratas , Relación Estructura-Actividad , Sulfonamidas/química , Tiofenos/química
18.
Bioorg Med Chem Lett ; 20(4): 1347-51, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20097070

RESUMEN

Utilizing mefloquine as a scaffold, a next generation quinoline methanol (NGQM) library was constructed to identify early lead compounds that possess biological properties consistent with the target product profile for malaria chemoprophylaxis while reducing permeability across the blood-brain barrier. The library of 200 analogs resulted in compounds that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum. Herein we report selected chemotypes and the emerging structure-activity relationship for this library of quinoline methanols.


Asunto(s)
Antimaláricos/síntesis química , Plasmodium falciparum/efectos de los fármacos , Quinolinas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antimaláricos/química , Antimaláricos/farmacología , Farmacorresistencia Fúngica , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Plasmodium falciparum/crecimiento & desarrollo , Quinolinas/química , Quinolinas/farmacología , Relación Estructura-Actividad
19.
Methods Mol Biol ; 2081: 81-106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31721120

RESUMEN

Confirming the in vivo efficacy of potential antileishmanial compounds that display in vitro potency and good chemical characteristics is one of the most important steps in preclinical research drug discovery before human clinical trials begin. Here we describe the use of the in vivo bioluminescent monitoring of high and low inocula of luciferase-expressing Leishmania major (L. major) parasites in traditional and more innovative rodent models of in vivo cutaneous leishmaniasis (CL) drug discovery.


Asunto(s)
Antiprotozoarios/farmacología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/parasitología , Mediciones Luminiscentes/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Genes Reporteros , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C
20.
ACS Pharmacol Transl Sci ; 3(5): 948-964, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33073193

RESUMEN

Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIß). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIß. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIß with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIß is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA