Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(2): 189-202, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38152893

RESUMEN

BACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Monocitos/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Factores de Riesgo , Estudios Prospectivos , Calcio/metabolismo , Fenotipo , Factores de Riesgo de Enfermedad Cardiaca
2.
Nature ; 579(7797): 111-117, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103177

RESUMEN

The avascular nature of cartilage makes it a unique tissue1-4, but whether and how the absence of nutrient supply regulates chondrogenesis remain unknown. Here we show that obstruction of vascular invasion during bone healing favours chondrogenic over osteogenic differentiation of skeletal progenitor cells. Unexpectedly, this process is driven by a decreased availability of extracellular lipids. When lipids are scarce, skeletal progenitors activate forkhead box O (FOXO) transcription factors, which bind to the Sox9 promoter and increase its expression. Besides initiating chondrogenesis, SOX9 acts as a regulator of cellular metabolism by suppressing oxidation of fatty acids, and thus adapts the cells to an avascular life. Our results define lipid scarcity as an important determinant of chondrogenic commitment, reveal a role for FOXO transcription factors during lipid starvation, and identify SOX9 as a critical metabolic mediator. These data highlight the importance of the nutritional microenvironment in the specification of skeletal cell fate.


Asunto(s)
Huesos/citología , Microambiente Celular , Condrogénesis , Metabolismo de los Lípidos , Factor de Transcripción SOX9/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Huesos/irrigación sanguínea , Condrocitos/citología , Condrocitos/metabolismo , Ácidos Grasos/metabolismo , Femenino , Privación de Alimentos , Factores de Transcripción Forkhead/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Oxidación-Reducción , Factor de Transcripción SOX9/genética , Transducción de Señal , Cicatrización de Heridas
3.
PLoS Comput Biol ; 19(10): e1011500, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801464

RESUMEN

Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various "what if?" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.


Asunto(s)
Actinas , Adhesiones Focales , Adhesiones Focales/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Integrinas/metabolismo , Matriz Extracelular/metabolismo , Adhesión Celular/fisiología , Talina
4.
Biomacromolecules ; 24(2): 604-612, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36724373

RESUMEN

Three-dimensional cell culture in engineered hydrogels is increasingly used in tissue engineering and regenerative medicine. The transfer of nutrients, gases, and waste materials through these hydrogels is of utmost importance for cell viability and response, yet the translation of diffusion coefficients into practical guidelines is not well established. Here, we combined mathematical modeling, fluorescent recovery after photobleaching, and hydrogel diffusion experiments on cell culture inserts to provide a multiscale practical approach for diffusion. We observed a dampening effect of the hydrogel that slowed the response to concentration changes and the creation of a diffusion gradient in the hydrogel by media refreshment. Our designed model combined with measurements provides a practical point of reference for diffusion coefficients in real-world culture conditions, enabling more informed choices on hydrogel culture conditions. This model can be improved in the future to simulate more complicated intrinsic hydrogel properties and study the effects of secondary interactions on the diffusion of analytes through the hydrogel.


Asunto(s)
Hidrogeles , Modelos Teóricos , Ingeniería de Tejidos/métodos , Medicina Regenerativa , Supervivencia Celular
5.
Chem Rev ; 121(8): 4561-4677, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33705116

RESUMEN

The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.


Asunto(s)
Materiales Biocompatibles/química , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Humanos , Ciencia de los Materiales/métodos
6.
Biophys J ; 121(14): 2693-2711, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35717559

RESUMEN

Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types wherein enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.


Asunto(s)
AMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal
7.
Small ; 18(10): e2105704, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34985808

RESUMEN

In vivo cells reside in a complex extracellular matrix (ECM) that presents spatially distributed biochemical and -physical cues at the nano- to micrometer scales. Chemical micropatterning is successfully used to generate adhesive islands to control where and how cells attach and restore cues of the ECM in vitro. Although chemical micropatterning has become a powerful tool to study cell-material interactions, only a fraction of the possible micropattern designs was covered so far, leaving many other possible designs still unexplored. Here, a high-throughput screening platform called "Galapagos chip" is developed. It contains a library of 2176 distinct subcellular chemical patterns created using mathematical algorithms and a straightforward UV-induced two-step surface modification. This approach enables the immobilization of ligands in geometrically defined regions onto cell culture substrates. To validate the system, binary RGD/polyethylene glycol patterns are prepared on which human mesenchymal stem cells are cultured, and the authors observe how different patterns affect cell and organelle morphology. As proof of concept, the cells are stained for the mechanosensitive YAP protein, and, using a machine-learning algorithm, it is demonstrated that cell shape and YAP nuclear translocation correlate. It is concluded that the Galapagos chip is a versatile platform to screen geometrical aspects of cell-ECM interaction.


Asunto(s)
Adhesivos , Ensayos Analíticos de Alto Rendimiento , Técnicas de Cultivo de Célula , Matriz Extracelular/metabolismo , Humanos , Polietilenglicoles
8.
PLoS Comput Biol ; 17(5): e1008921, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33983922

RESUMEN

Cellular and intracellular processes are inherently complex due to the large number of components and interactions, which are often nonlinear and occur at different spatiotemporal scales. Because of this complexity, mathematical modeling is increasingly used to simulate such systems and perform experiments in silico, many orders of magnitude faster than real experiments and often at a higher spatiotemporal resolution. In this article, we will focus on the generic modeling process and illustrate it with an example model of membrane lipid turnover.


Asunto(s)
Biología Celular , Modelos Biológicos , Biología Celular/estadística & datos numéricos , Biología Computacional , Simulación por Computador , Conceptos Matemáticos , Lípidos de la Membrana/metabolismo , Dinámicas no Lineales , Programas Informáticos , Análisis Espacio-Temporal
9.
Medicina (Kaunas) ; 58(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36556977

RESUMEN

BACKGROUND: Cell and/or tissue-based wound care products have slowly advanced in the treatment of non-healing ulcers, however, few studies have evaluated the effectiveness of these devices in the management of severe diabetic foot ulcers. METHOD: This study (KereFish) is part of a multi-national, multi-centre, randomised, controlled clinical investigation (Odin) with patients suffering from deep diabetic wounds, allowing peripheral artery disease as evaluated by an ankle brachial index equal or higher than 0.6. The study has parallel treatment groups: Group 1 treatment with Kerecis® Omega3 Wound™ versus Group 2 treatment with standard of care. The primary objective is to test the hypothesis that a larger number of severe diabetic ulcers and amputation wounds, including those with moderate arterial disease, will heal in 16 weeks when treated with Kerecis® Omega3 Wound™ than with standard of care. CONCLUSION: This study has received the ethics committee approval of each participating country. Inclusion of participants began in March 2020 and ended in July 2022. The first results will be presented in March 2023. The study is registered in ClinicalTrials.gov as Identifier: NCT04537520.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Animales , Pie Diabético/cirugía , Trasplante de Piel , Nivel de Atención , Cicatrización de Heridas , Método Doble Ciego
10.
Biophys J ; 120(20): 4360-4377, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34509508

RESUMEN

Membrane binding and unbinding dynamics play a crucial role in the biological activity of several nonintegral membrane proteins, which have to be recruited to the membrane to perform their functions. By localizing to the membrane, these proteins are able to induce downstream signal amplification in their respective signaling pathways. Here, we present a 3D computational approach using reaction-diffusion equations to investigate the relation between membrane localization of focal adhesion kinase (FAK), Ras homolog family member A (RhoA), and signal amplification of the YAP/TAZ signaling pathway. Our results show that the theoretical scenarios in which FAK is membrane bound yield robust and amplified YAP/TAZ nuclear translocation signals. Moreover, we predict that the amount of YAP/TAZ nuclear translocation increases with cell spreading, confirming the experimental findings in the literature. In summary, our in silico predictions show that when the cell membrane interaction area with the underlying substrate increases, for example, through cell spreading, this leads to more encounters between membrane-bound signaling partners and downstream signal amplification. Because membrane activation is a motif common to many signaling pathways, this study has important implications for understanding the design principles of signaling networks.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal , Fosfoproteínas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
11.
Adv Funct Mater ; 31(42)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34924912

RESUMEN

Bioengineering of tissues and organs has the potential to generate functional replacement organs. However, achieving the full-thickness vascularization that is required for long-term survival of living implants has remained a grand challenge, especially for clinically sized implants. During the pre-vascular phase, implanted engineered tissues are forced to metabolically rely on the diffusion of nutrients from adjacent host-tissue, which for larger living implants results in anoxia, cell death, and ultimately implant failure. Here it is reported that this challenge can be addressed by engineering self-oxygenating tissues, which is achieved via the incorporation of hydrophobic oxygen-generating micromaterials into engineered tissues. Self-oxygenation of tissues transforms anoxic stresses into hypoxic stimulation in a homogenous and tissue size-independent manner. The in situ elevation of oxygen tension enables the sustained production of high quantities of angiogenic factors by implanted cells, which are offered a metabolically protected pro-angiogenic microenvironment. Numerical simulations predict that self-oxygenation of living tissues will effectively orchestrate rapid full-thickness vascularization of implanted tissues, which is empirically confirmed via in vivo experimentation. Self-oxygenation of tissues thus represents a novel, effective, and widely applicable strategy to enable the vascularization living implants, which is expected to advance organ transplantation and regenerative medicine applications.

12.
Diabetes Obes Metab ; 23(5): 1162-1172, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33528920

RESUMEN

AIM: To investigate the association between routine use of dipeptidyl peptidase-4 (DPP-4) inhibitors and the severity of coronavirus disease 2019 (COVID-19) infection in patient with type 2 diabetes in a large multicentric study. MATERIALS AND METHODS: This study was a secondary analysis of the CORONADO study on 2449 patients with type 2 diabetes (T2D) hospitalized for COVID-19 in 68 French centres. The composite primary endpoint combined tracheal intubation for mechanical ventilation and death within 7 days of admission. Stabilized weights were computed for patients based on propensity score (DPP-4 inhibitors users vs. non-users) and were used in multivariable logistic regression models to estimate the average treatment effect in the treated as inverse probability of treatment weighting (IPTW). RESULTS: Five hundred and ninety-six participants were under DPP-4 inhibitors before admission to hospital (24.3%). The primary outcome occurred at similar rates in users and non-users of DPP-4 inhibitors (27.7% vs. 28.6%; p = .68). In propensity analysis, the IPTW-adjusted models showed no significant association between the use of DPP-4 inhibitors and the primary outcome by Day 7 (OR [95% CI]: 0.95 [0.77-1.17]) or Day 28 (OR [95% CI]: 0.96 [0.78-1.17]). Similar neutral findings were found between use of DPP-4 inhibitors and the risk of tracheal intubation and death. CONCLUSIONS: These data support the safety of DPP-4 inhibitors for diabetes management during the COVID-19 pandemic and they should not be discontinued.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Anciano , Anciano de 80 o más Años , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , COVID-19/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Pronóstico , Puntaje de Propensión
13.
J Wound Care ; 30(Sup6): S34-S41, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34120465

RESUMEN

OBJECTIVE: To describe the rates of healing, major amputation and mortality after 12 months in patients with a new diabetic foot ulcer (DFU) and their care in a French diabetic foot service (DFS). METHOD: A prospective single-centre study including patients from March 2009 to December 2010. The length of time to healing, minor amputation, major amputation and mortality rate after inclusion were analysed using the Kaplan-Meier method. RESULTS: Some 347 patients were included (3% lost to follow-up), with a median follow-up (IQR) of 19 (12-24) months. The mean (SD) age was 65±12 years, 68% were male, and the median duration of the ulcer was 49 (19-120) days. Complications of the DFU were ischaemia (70%), infection (55%) and osteomyelitis (47%). Of the patients, 50% were inpatients in the DFS at inclusion (median duration of hospitalisation 26 (15-41) days). The rate of healing at one year was 67% (95% confidence interval (CI): 61-72); of major amputation 10% (95% CI: 7-17); of minor amputation 19% (95% CI: 14-25), and the death rate was 9% (95% CI: 7-13). Using an adjusted hazard ratio, the predictive factors of healing were perfusion and the area of the wound. The risk factors for a major amputation were active smoking and osteomyelitis. The risk factors for mortality were perfusion and age. CONCLUSION: This study confirms the need to treat DFUs rapidly, in a multidisciplinary DFS.


Asunto(s)
Amputación Quirúrgica/estadística & datos numéricos , Pie Diabético/mortalidad , Pie Diabético/terapia , Cicatrización de Heridas , Anciano , Femenino , Pie , Humanos , Estimación de Kaplan-Meier , Tiempo de Internación , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Fumar/efectos adversos
14.
Cardiovasc Diabetol ; 19(1): 140, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948184

RESUMEN

BACKGROUND: Lower limb arterial calcification is a frequent, underestimated but serious complication of diabetes. The DIACART study is a prospective cohort study designed to evaluate the determinants of the progression of lower limb arterial calcification in 198 patients with type 2 diabetes. METHODS: Lower limb arterial calcification scores were determined by computed tomography at baseline and after a mean follow up of 31.20 ± 3.86 months. Serum RANKL (Receptor Activator of Nuclear factor kB Ligand) and bone remodeling, inflammatory and metabolic parameters were measured at baseline. The predictive effect of these markers on calcification progression was analyzed by a multivariate linear regression model. RESULTS: At baseline, mean ± SD and median lower limb arterial calcification scores were, 2364 ± 5613 and 527 respectively and at the end of the study, 3739 ± 6886 and 1355 respectively. Using multivariate analysis, the progression of lower limb arterial log calcification score was found to be associated with (ß coefficient [slope], 95% CI, p-value) baseline log(calcification score) (1.02, 1.00-1.04, p < 0.001), triglycerides (0.11, 0.03-0.20, p = 0.007), log(RANKL) (0.07, 0.02-0.11, p = 0.016), previous ischemic cardiomyopathy (0.36, 0.15-0.57, p = 0.001), statin use (0.39, 0.06-0.72, p = 0.023) and duration of follow up (0.04, 0.01-0.06, p = 0.004). CONCLUSION: In patients with type 2 diabetes, lower limb arterial calcification is frequent and can progress rapidly. Circulating RANKL and triglycerides are independently associated with this progression. These results open new therapeutic perspectives in peripheral diabetic calcifying arteriopathy. Trial registration NCT02431234.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Angiopatías Diabéticas/sangre , Extremidad Inferior/irrigación sanguínea , Ligando RANK/sangre , Triglicéridos/sangre , Calcificación Vascular/sangre , Anciano , Estudios de Cohortes , Angiopatías Diabéticas/diagnóstico por imagen , Angiopatías Diabéticas/epidemiología , Progresión de la Enfermedad , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/epidemiología , Estudios Prospectivos , Tomografía Computarizada por Rayos X , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología
15.
J Wound Care ; 29(8): 464-471, 2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32804035

RESUMEN

OBJECTIVE: To describe the rates of healing, major amputation and mortality after 12 months in patients with a new diabetic foot ulcer (DFU) and their care in a French diabetic foot service (DFS). METHOD: A prospective single-centre study including patients from March 2009 to December 2010. The length of time to healing, minor amputation, major amputation and mortality rate after inclusion were analysed using the Kaplan-Meier method. RESULTS: Some 347 patients were included (3% lost to follow-up), with a median follow-up (IQR) of 19 (12-24) months. The mean (SD) age was 65±12 years, 68% were male, and the median duration of the ulcer was 49 (19-120) days. Complications of the DFU were ischaemia (70%), infection (55%) and osteomyelitis (47%). Of the patients, 50% were inpatients in the DFS at inclusion (median duration of hospitalisation 26 (15-41) days). The rate of healing at one year was 67% (95% confidence interval (CI): 61-72); of major amputation 10% (95% CI: 7-17); of minor amputation 19% (95% CI: 14-25), and the death rate was 9% (95% CI: 7-13). Using an adjusted hazard ratio, the predictive factors of healing were perfusion and the area of the wound. The risk factors for a major amputation were active smoking and osteomyelitis. The risk factors for mortality were perfusion and age. CONCLUSION: This study confirms the need to treat DFUs rapidly, in a multidisciplinary DFS.


Asunto(s)
Amputación Quirúrgica , Pie Diabético/cirugía , Úlcera del Pie/cirugía , Cicatrización de Heridas/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Diabetes Mellitus , Pie Diabético/mortalidad , Femenino , Pie , Úlcera del Pie/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
16.
J Acoust Soc Am ; 145(2): 1048, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30823826

RESUMEN

Bone healing process is a complicated phenomenon regulated by biochemical and mechanical signals. Experimental studies have shown that ultrasound (US) accelerates bone ossification and has a multiple influence on cell differentiation and angiogenesis. In a recent work of the authors, a bioregulatory model for providing bone-healing predictions was addressed, taking into account for the first time the salutary effect of US on the involved angiogenesis. In the present work, a mechanobioregulatory model of bone solidification under the US presence incorporating also the mechanical environment on the regeneration process, which is known to affect cellular processes, is presented. An iterative procedure is adopted, where the finite element method is employed to compute the mechanical stimuli at the linear elastic phases of the poroelastic callus region and a coupled system of partial differential equations to simulate the enhancement by the US cell angiogenesis process and thus the oxygen concentration in the fractured area. Numerical simulations with and without the presence of US that illustrate the influence of progenitor cells' origin in the healing pattern and the healing rate and simultaneously demonstrate the salutary effect of US on bone repair are presented and discussed.


Asunto(s)
Fenómenos Biomecánicos/efectos de la radiación , Huesos , Curación de Fractura/efectos de la radiación , Modelos Biológicos , Ondas Ultrasónicas , Animales , Huesos/citología , Huesos/efectos de la radiación , Simulación por Computador , Curación de Fractura/fisiología , Fracturas Óseas/fisiopatología , Osteogénesis/efectos de la radiación
17.
Diabetologia ; 61(2): 399-412, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28988346

RESUMEN

AIMS/HYPOTHESIS: Obesity and type 2 diabetes are concomitant with low-grade inflammation affecting insulin sensitivity and insulin secretion. Recently, the thioredoxin interacting protein (TXNIP) has been implicated in the activation process of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we aim to determine whether the expression of TXNIP is altered in the circulating immune cells of individuals with type 2 vs type 1 diabetes and whether this can be related to specific causes and consequences of inflammation. METHODS: The expression of TXNIP, inflammatory markers, markers of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress and enzymes involved in sphingolipid metabolism was quantified by quantitative reverse transcription real-time PCR (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) of 13 non-diabetic individuals, 23 individuals with type 1 diabetes and 81 with type 2 diabetes. A lipidomic analysis on the plasma of 13 non-diabetic individuals, 35 individuals with type 1 diabetes and 94 with type 2 diabetes was performed. The effects of ER stress or of specific lipids on TXNIP and inflammatory marker expression were analysed in human monocyte-derived macrophages (HMDMs) and THP-1 cells. RESULTS: The expression of TXNIP and inflammatory and UPR markers was increased in the PBMCs of individuals with type 2 diabetes when compared with non-diabetic individuals or individuals with type 1 diabetes. TXNIP expression was significantly correlated with plasma fasting glucose, plasma triacylglycerol concentrations and specific UPR markers. Induction of ER stress in THP-1 cells or cultured HMDMs led to increased expression of UPR markers, TXNIP, NLRP3 and IL-1ß. Conversely, a chemical chaperone reduced the expression of UPR markers and TXNIP in PBMCs of individuals with type 2 diabetes. The lipidomic plasma analysis revealed an increased concentration of saturated dihydroceramide and sphingomyelin in individuals with type 2 diabetes when compared with non-diabetic individuals and individuals with type 1 diabetes. In addition, the expression of specific enzymes of sphingolipid metabolism, dihydroceramide desaturase 1 and sphingomyelin synthase 1, was increased in the PBMCs of individuals with type 2 diabetes. Palmitate or C2 ceramide induced ER stress in macrophages as well as increased expression of TXNIP, NLRP3 and IL-1ß. CONCLUSIONS/INTERPRETATION: In individuals with type 2 diabetes, circulating immune cells display an inflammatory phenotype that can be linked to ER stress and TXNIP expression. Immune cell ER stress can in turn be linked to the specific exogenous and endogenous lipid environment found in type 2 diabetes.


Asunto(s)
Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Inflamasomas/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Portadoras/genética , Células Cultivadas , Ácidos Grasos Monoinsaturados/farmacología , Humanos , Inflamasomas/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Células THP-1 , Respuesta de Proteína Desplegada/efectos de los fármacos
18.
J Theor Biol ; 365: 247-64, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25452136

RESUMEN

A timely restoration of the ruptured blood vessel network in order to deliver oxygen and nutrients to the fracture zone is crucial for successful bone healing. Indeed, oxygen plays a key role in the aerobic metabolism of cells, in the activity of a myriad of enzymes as well as in the regulation of several (angiogenic) genes. In this paper, a previously developed model of bone fracture healing is further improved with a detailed description of the influence of oxygen on various cellular processes that occur during bone fracture healing. Oxygen ranges of the cell-specific oxygen-dependent processes were established based on the state-of-the art experimental knowledge through a rigorous literature study. The newly developed oxygen model is compared with previously published experimental and in silico results. An extensive sensitivity analysis was also performed on the newly introduced oxygen thresholds, indicating the robustness of the oxygen model. Finally, the oxygen model was applied to the challenging clinical case of a critical sized defect (3mm) where it predicted the formation of a fracture non-union. Further model analyses showed that the harsh hypoxic conditions in the central region of the callus resulted in cell death and disrupted bone healing thereby indicating the importance of a timely vascularization for the successful healing of a large bone defect. In conclusion, this work demonstrates that the oxygen model is a powerful tool to further unravel the complex spatiotemporal interplay of oxygen delivery, diffusion and consumption with the several healing steps, each occurring at distinct, optimal oxygen tensions during the bone repair process.


Asunto(s)
Curación de Fractura/efectos de los fármacos , Fracturas Óseas/patología , Modelos Biológicos , Oxígeno/farmacología , Callo Óseo/efectos de los fármacos , Callo Óseo/patología , Simulación por Computador , Matriz Extracelular/metabolismo , Humanos , Factores de Tiempo
19.
PLoS Comput Biol ; 10(11): e1003888, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375821

RESUMEN

Although bone has a unique restorative capacity, i.e., it has the potential to heal scarlessly, the conditions for spontaneous bone healing are not always present, leading to a delayed union or a non-union. In this work, we use an integrative in vivo-in silico approach to investigate the occurrence of non-unions, as well as to design possible treatment strategies thereof. The gap size of the domain geometry of a previously published mathematical model was enlarged in order to study the complex interplay of blood vessel formation, oxygen supply, growth factors and cell proliferation on the final healing outcome in large bone defects. The multiscale oxygen model was not only able to capture the essential aspects of in vivo non-unions, it also assisted in understanding the underlying mechanisms of action, i.e., the delayed vascularization of the central callus region resulted in harsh hypoxic conditions, cell death and finally disrupted bone healing. Inspired by the importance of a timely vascularization, as well as by the limited biological potential of the fracture hematoma, the influence of the host environment on the bone healing process in critical size defects was explored further. Moreover, dependent on the host environment, several treatment strategies were designed and tested for effectiveness. A qualitative correspondence between the predicted outcomes of certain treatment strategies and experimental observations was obtained, clearly illustrating the model's potential. In conclusion, the results of this study demonstrate that due to the complex non-linear dynamics of blood vessel formation, oxygen supply, growth factor production and cell proliferation and the interactions thereof with the host environment, an integrative in silico-in vivo approach is a crucial tool to further unravel the occurrence and treatments of challenging critical sized bone defects.


Asunto(s)
Curación de Fractura/fisiología , Fracturas Óseas/fisiopatología , Modelos Biológicos , Animales , Cartílago/metabolismo , Células Cultivadas , Simulación por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Periostio/citología , Ingeniería de Tejidos , Andamios del Tejido
20.
Cell Rep ; 43(3): 113811, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393944

RESUMEN

Extracellular matrix (ECM) rigidity is a major effector of cell fate decisions. Whereas cell proliferation on stiff matrices, wherein Yes-associated protein (YAP) plays a pivotal role, is well documented, activation of apoptosis in response to soft matrices is poorly understood. Here, we show that YAP drives the apoptotic decision as well. We find that in cells on soft matrices, YAP is recruited to small adhesions, phosphorylated at the Y357 residue, and translocated into the nucleus, ultimately leading to apoptosis. In contrast, Y357 phosphorylation levels are dramatically low in large adhesions on stiff matrices. Furthermore, mild attenuation of actomyosin contractility allows adhesion growth on soft matrices, leading to reduced Y357 phosphorylation levels and resulting in cell growth. These findings indicate that failed adhesion reinforcement drives rigidity-dependent apoptosis through YAP and that this decision is not determined solely by ECM rigidity but rather by the balance between cellular forces and ECM rigidity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Integrinas , Integrinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP , Fosforilación , Matriz Extracelular/metabolismo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA